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1 Introduction

Efficient warehouse pick and place is an increasingly important industry problem.
Picking specific items out of a box of objects is also one of the canonical problems
in robotics. Amazon Robotics has over the years created systems that enable the
automated and efficient movement of items in a warehouse. In 2015 they initiated a
competition focusing on the problem of how to perform picking and packing tasks
with robotic systems.

The 2017 Amazon Robotics Challenge comprised of two tasks, stow and pick,
reflecting warehouse operations for online order fulfilment. These involve transfer-
ring items between Amazon’s red plastic container, a storage system (previously
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an Amazon provided shelf), and a selection of standard cardboard shipping boxes.
Teams were required to develop a robotic solution and were free to design their own
storage system within certain limitations. The robots need to visually detect and
identify objects in clutter and then successfully transfer them between locations,
demanding a robust integration of manipulator, object recognition, motion planning
and robotic grasping.

In this chapter we present an overview of our approach and design that led to
winning the 2017 competition finals, held in Nagoya, Japan. The primary differ-
entiating factor of our system is that we use a Cartesian manipulator, nicknamed
Cartman (Fig. 1). We find it to greatly simplify motion planning and executing
in the confines of the box shaped storage system compared to articulated robotic
arms. It also enabled us to use a dual-ended end-effector comprising two distinct
tools. Cartman stowed 14 (out of 16) and picked all 9 items in 27min, scoring 272
points. We released four tech reports explaining the various sub-systems in more
detail [17, 18, 20, 29].

Fig. 1 Cartman includes three linear axes to which a wrist is attached. It holds a camera and two
end-effector modalities (suction and parallel gripper) that share two revolute axes, and have an
extra revolute axis each. To deal with the uncertainty we added a secondary camera, positioned on
the frame to take images of picked items with a red backdrop (curtains), and scales underneath the
boxes
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2 Background

There is a long history of research into grasping and dexterous manipulation [28],
and recent progress has largely been driven by technological developments such as
stronger, more precise and more readily available collaborative robotic arms [15]
and simple compliant and universal grippers [1, 19]. Robust perception is also a
key challenge [4]. Over recent years, significant leaps in computer vision were seen
thanks to the application of deep learning techniques and large scale datasets [5].
However, the increased performance of computer vision systems has not translated
to real-world robotic improvements, highlighting deficiencies in robust perception
and hand-eye coordination. Datasets and benchmarks are increasingly exploited
in the robotics community to find solutions for such tasks [2, 13] yet still have
some shortcomings [12]. The applied nature of competitions makes them one of
the greatest drivers of progress—from self-driving cars, to humanoids, to robotic
picking.

The 2017 Amazon Robotics Challenge comprised two tasks, stow and pick,
analogous to warehouse assignments, which involve transferring items between
Amazon’s totes (a red plastic container), the team’s storage system and a selection
of Amazon’s standard cardboard shipping boxes. Teams were required to design
their own storage system within certain limitations, unlike in previous competitions
where standardised shelving units were supplied. Our storage system comprises two
red, wooden boxes with open tops.

In the stow task, teams are required to transfer 20 objects from a cluttered pile
within a tote into their storage system within 15min. Points are awarded based
on the system’s ability to successfully pick items and correctly report their final
location, with penalties for dropping or damaging items, or having items protruding
from the storage system.

In the pick task, 32 items were placed by hand into the team’s storage system. The
system was provided with an order specifying 10 items to be placed into 3 cardboard
boxes within 15min. Points were awarded for successfully transferring the ordered
items into the correct boxes, with the same penalties applied for mishandled or
protruding objects.

The 2017 competition introduced a new finals round, in which the top 8 teams
competed. The finals consisted of a combined stow and pick task. Sixteen items
were first hand-placed into the storage system by the team, followed by a vigorous
rearrangement by the judges. Sixteen more items were provided in a tote and had to
be stowed into the storage system by the robot. Then, the system had to perform a
pick task of 10 items. The state of the robot and storage system could not be altered
between stow and pick.

A major addition to the challenge compared to previous years was that not all
items were known to the teams beforehand. The items for each task were provided
to teams 45min before each competition run, and consisted of 50% items selected
from a set of 40 previously seen items, and 50% previously unknown items. This
change introduced a major complexity for perception, as systems had to be able to
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handle a large number of new items in a short period of time. This, in particular,
made deep learning approaches to object recognition much more difficult.

3 Cartman: System Overview and Design

Most pick-and-place robots require at least a manipulator, a gripper, and a per-
ception system. The design of these components and the overall robot system
itself, must consider a range of constraints specific to the given application. These
constraints will often include: the items the robot must manipulate, the environment
in which the robot will operate, required operating speed, cost or return on
investment, overall system reliability, grasp success rate, human-safe operation, etc.
Herein we describe our final system design (both hardware and software) and how
it met the constraints of the competition. We also discuss our design process, of
which, we argue, contributed largely to our success in the competition.

Teams almost exclusively competed with articulated robotic arms [4], yet the
task of picking items from a storage system is mostly a linear problem, which
can easily be broken down into straight line motions. We had previously, in the
2016 challenge, competed with a Baxter robot [13], and encountered difficulties
in planning movements of its 7-DoF arm within the limited confines of the shelf.
Linear movement of an articulated arm requires control of multiple joints, which
if not perfectly executed may result in sections of the arm colliding with the
environment.

Our 2017 challenge robot, Cartman, in contrast, greatly simplifies the task of
motion planning within a storage system due to with its Cartesian design and ability
to move linearly along all three axes. We find considerable benefits of using such a
design in warehouse pick-and-place tasks:

• Workspace: Cartesian manipulators have a compact rectangular workspace,
compared to a circular of arms. An advantage particularly for the ARC
constraints.

• Simplicity: Motion planning with Cartesian robots is simple, fast, and unlikely
to fail even in proximity to shelving.

• Predictability: The simple, straight-line motions mean that failed planning
attempts and erratic behaviour are less likely.

• Reachability: Cartesian design results in improved reachability (see Fig. 3)
within the workspace and lowered chance of collision compared to arms.

The software developed for Cartman is utilising ROS (Robot Operating Sys-
tem) [23], which provides a framework for integrating the various sensors, process-
ing sub-systems, and controllers. As per the regulation of the challenge, it is fully
open-source and freely available for download.1

1https://github.com/warehouse-picking-automation-challenges/team_acrv_2017.

https://github.com/warehouse-picking-automation-challenges/team_acrv_2017
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Storage System In 2017 the teams were allowed to design their own “storage sys-
tem”, replacing the previously used Kiva shelf provided by Amazon. The constraints
were a total bounding-box volume of 5000 cm3 (roughly the volume of two Amazon
totes) and between 2 and 10 internal compartments. This major difference to the
previous competitions opened a new design space for the teams. Our design consists
of two red, wooden boxes approximately matching the dimensions of the Amazon
totes, and opts for a horizontal (top-down picking) design instead of a vertical shelf-
like design, which the large majority of teams concluded to be the more reliable
approach. The similarity in colour to the totes allows the same perception system to
be used for both the tote and the storage system.

4 Mechanical Design

As mentioned, Cartman employs a Cartesian design as depicted in Fig. 1. Artic-
ulated manipulators are common for many robotics applications due to their
versatility and large workspace with respect to their mechanical footprint. They
though have singularities and discontinuities for certain end-effector configura-
tions [3, 9]. There are ways of reducing but not eliminating these drawbacks on
motion planning [6, 21]. Using a Cartesian manipulator with a wrist joint to work
in a Cartesian workspace eliminates almost all singularities and discontinuities
(see Fig. 3 for a comparison of Cartman and other robot arms). On the other
hand the disadvantage with a Cartesian manipulator is the requirement for a larger
mechanical footprint in ratio to the overall workspace of the manipulator. This is
due to the fact that the linear motion requires some form of support, usually a rail,
along the entire length of the axis. This is less of a problem in warehouses and
other conveyor-belt type operations, where the operation space can be completely
enclosed by the robot.

4.1 Specifications

The entire manipulator system is mounted on frame of aluminium extrusions and
rails for the three axes (Fig. 2). Apart from the three linear axes it consists of a wrist
joint controlling roll, pitch, and yaw of a multi-modal end-effector also developed
for the challenge. The following specifications were set out before designing the
manipulator for the Amazon Robotics Challenge:

• A reachable workspace of 1.2m × 1.2m × 1.0m
• A top linear velocity of 1m/s under load along the three linear axes (X/Y/Z).
• A top angular velocity of 1rad/s under load along the angular axes
(roll/pitch/yaw).

• A payload capacity of 2 kg.
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• Six DoF at the end-effector, given by three linear axes forming the Cartesian
gantry and a three-axis wrist.

• Ability to be easily de/constructed to simplify transport of the robot overseas to
the event.

4.2 Mechanical Components

The manipulator frame is mounted on a stand of standard aluminium extrusions as
seen in Fig. 2. The frame consists of laser cut and folded 1.2mm sheet aluminium
for housing the rails, providing a great trade-off between stability and weight. The
reduced weight was important as the robot was to be transported overseas for the
competition. The sheet aluminium formed the main outer frame housing the X-axis
belt system and transmission rod.

The linear rails used for the X- and Y -axes are TBR20 and TBR15 precision
type profile rail, respectively. Smaller rails were used in the Y -axis to reduce the
overall weight of the system. The Y -axis consists of two 10mm round rails. The
downside to using 10mm rails, however, is that when the Z-axis is extended a

Fig. 2 Isometric view of the entire manipulator. Key components have been labelled and are as
follows: (a) Aluminium T-slot stand, (b) Manipulator Aluminium frame, (c)X-axis TBR20 profile
rails, (d) Y -axis TBR15 profile rails, (e) Z-axis 10mm round rails, (f) Y–Z motor-carriage, (g)
Suction gripper, (h) Wrist, (i) Parallel plate gripper
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pendulum effect is created inducing oscillations at the end-effector due to the rail’s
deflection. Although deflection and oscillations are present, steady state accuracy is
still achieved with ease once settled. We considered this trade-off during the design
process. Additionally, the oscillations are minimised by raising the Z-axis when
performing large translational movements.

Linear motion is performed by Technic’s ClearPath SD-SK-2311Smotors. They
are closed-loop brush-less motors designed to be a drop in replacement for stepper
motors, eliminates the need for external encoders. They were chosen due their high
performance and ease of use. Three Dynamixel Pro L54-50-500 are controlling the
roll, pitch, and yaw axes. These provide the necessary operating torque to hold a
2 kg payload while under acceleration.

To actuate the prismatic joints, a belt and pulley system was used. A single motor
drives theX-axis. In order to eliminate a cantilever effect on this, a transmission rod
is used to transmit power from one member to another. One common design that
has been observed in a lot of simple manipulator designs is each axis motor needs
to carry the weight of all distal motors as well as the payload. As a result, more
powerful motors are required which increases weight as well as cost. To solve this
problem a differential belt system was designed. Rather than using a single motor
to drive a single axis, two motors work in tandem to drive two axes (Fig. 3).

4.3 Software and Electrical Components

A single microcontroller is used to control all six axes. We employed a Teensy 3.6
with a breakout board including a logic shifter circuits for each of the ClearPath
motor pins. In order to interface with the Dynamixel Pro motors, an RS485
module was added. ROS JointState message type which was processed by the
Teensy. The low level firmware functions send commands to both the ClearPath

Fig. 3 Discontinuity maps of (a) Cartman’s end-effector, (b) a Baxter’s left gripper, and (c) a UR-
5. If the end-effector passes through these boundaries, joint velocities can accelerate to infinity.
Cartman’s design limits these discontinuity boundaries, making planning simpler and safer
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and Dynamixel Pro motors and also read any feedback that was available from the
motors. As the ClearPath motors are a drop-in replacement for stepper motors and
as such the open source AccelStepper library [16] is used. It provides the ability to
deploy an acceleration profile per motor. The Dynamixel Pro is controlled using a
slightly modified version of the OpenCR library [10]. ROS (the Robot Operating
System) [24] is handling the higher-level (system) functionality. Desired end-
effector poses and robot states are ROS messages published by the microcontroller
and used by the MoveIt! package [27], which was the interface to the state-machine.

The complete design is open sourced and available online.2 For a more in-depth
analysis of the design of Cartman readers are referred to our tech report [17].

4.4 Multi-Modal End-Effector

The challenge requires teams to pick a very diverse set of items, including rigid,
semi-rigid, hinged, deformable, and porous objects. We employ a hybrid end-
effector design (Fig. 4) comprising vacuum suction and a parallel plate gripper. Due
to the use of a Cartesian system, we do not have to combine suction and gripping
into a single tool, leading to a less complex end-effector design (e.g. [7, 25]). We
integrate these two distinct tools at the wrist, to be swapped by a single motor
rotation. A further advantage, particularly during development, was that this design
allows each tool to be developed and tested individually reducing dependencies and
downtime.

The grasping system relies on a tight coupling of the physical end-effector and
its relevant software components, which are discussed in Sect. 5.5.

Fig. 4 End-effector Assembly. (a) Rotating suction cup. (b) Suction gripper pitch servo (drive belt
not pictured). (c) wrist-mounted RealSense camera. (d) suction hose attachment. (e) Roll motor.
(f) Yaw (tool-change) motor. (g) Gripper pitch motor. (h) Gripper servo. (i) Parallel plate gripper

2http://Juxi.net/projects/AmazonRoboticsChallenge/.

http://Juxi.net/projects/AmazonRoboticsChallenge/
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Vacuum Suction Tool We opted for vacuum suction as the primary grasping
mechanism, based on previous year’s experience [4]. It lends itself to simpler grasp
planning, as only a single, rotation-invariant, grasp point is required to be detected.
It has in the past shown an outstanding ability to grasp a large range of items.

The suction system consists of a 40mm diameter multi-bellow suction cup. It can
be rotated in a full semi-circle at its base, allowing it to attach to vertical surfaces
inside cluttered environments. Various approaches were tested before settling on
a belt-driven (by a Dynamixel RX-10 servo) implementation, which had the best
trade-off in terms of overall size, rotation, and reachability. The suction gripper is
our default tool, with the parallel gripper being specified for porous or deformable
objects which create hardly any vacuum seal, e.g., cotton gloves or marbles.

To get a working prototype for full end-to-end system testing, the initial end-
effector design was a simple, rigid suction tool with no articulation (Fig. 5a), based
on our previous design [13]. Even using just the initial design, our first Cartman
prototype was able to attach to 80% of the objects provided. The main limitations
identified from the first test were: firstly, to incorporate gripping as a secondary
grasping modality is required, and secondly, improving robustness, particularly in
more challenging, cluttered environments. We observed drastically reduced grasp
success when unable to approach the grasp at a perpendicular angle, especially
encountered with objects leaning against the side of the storage system.

To overcome this articulation of the suction tool was added. At first the entire tool
arm was moved in an attempt to keep the physical footprint to a minimum (Fig. 5c).
However, this still required a clear approach trajectory. An extra degree of freedom
was therefore added to the suction cup. In the final design an extra motor is added,
as well as the “arm” extended to 240mm. The belt-driven design pivots the suction
cup closer to the end-point (Figs. 5d), keeping the footprint to a minimum. This

Fig. 5 Four major stages of the end-effector design, as discussed in Sect. 4.4. (a) Static suction
tool. (b) Addition of gripper. (c) Extra degree of freedom on suction tool. (d) Final design



134 J. Leitner et al.

design allows for 6 degrees of control at the suction end-point, reducing the issues
observed in earlier versions.

Parallel Gripper The subset of known Amazon items that could not be picked with
our suction system were predominantly those which were porous, or too thin for a
suction cup to be attached. We opted to use a parallel gripper as the second grasping
modality. A survey of commercially available and open-source parallel grippers did
not yield a promising solution for Amazon’s challenge tasks, with the options either
too large or could not easily be modified.

We opted therefore, to design a custom gripper purpose-built for the challenge
with integration to our Cartesian manipulator in mind. By limiting our design
parameters to the set of objects which could not be grasped via suction, we created
a highly customised solution without any unnecessary overhead, limiting the design
space for our gripper. The final design of the parallel jaw gripper uses a single
actuating servo and has a stroke of 70mm, and a maximum grasp width of 60mm.
A 190mm extension arm connects the wrist to the gripper to ensure it can reach
within the Amazon tote.

Our gripper plates feature slightly angled tips (after trialling various designs) to
scoop thin objects, such as the scissors, and create a more powerful pinch at the tip
for picking deformable objects, such as the sponges or gloves. In addition, high-
friction tape add a small amount of compliance to the gripper, specifically helping
with rigid objects, while increasing the overall grasp success rate.

For a more in-depth analysis of the end-effector design readers are referred to
our tech report [29].

5 Perception System

Manipulating individual items in a large warehouse is a complex task for robots. It
is challenging both from a mechanical but also from a computer vision viewpoint.
Even though the environment can be controlled to a certain degree, e.g., the storage
system can be custom designed to facilitate recognition, the sheer number of items
to be handled poses non-trivial challenges. In addition, the items are often placed
in narrow bins to save space, thus partial or even full occlusion must be addressed
from both the perception and manipulation side.

5.1 Perception Pipeline

The perception system needs to deliver two key functions: (1) detection, identi-
fication, and segmentation of the correct item, and (2) the generation of a set of
possible grasp points for the object (Fig. 6). The two tasks of the challenge required
to detect a variable number of items in the bins, with lighting and placement creating
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Fig. 6 The perception pipeline, showing (a) RGB image of items in our storage system, (b) output
of semantic segmentation, and (c) segmented point cloud for the bottle, with grasp points calculated
(higher ranked grasp points shown as longer and green and the best candidate in blue). Even though
the semi-transparent bottle results in inaccurate depth information, our system still finds good grasp
points on the centre of the bottle, with points on the neck and head being weighted lower

appearance changes throughout the competition. The biggest change, however, to
previous edition was in the replacement of 50% of the training objects by new ones.
These new items were presented to the participants only 45min prior to the start of
each task. These conditions require a perception system that is very robust and not
fully over-fitted to the training set, yet also models that can be quickly adapted to
new categories.

In our perception pipeline we perform the two mentioned key functions sequen-
tially. We first perform an object detection, by using a fully supervised semantic
segmentation solution based on deep neural networks, followed by running a grasp
synthesis technique on the extracted segment. Second-placed Team NimbRo uses
a similar perception pipeline, comprising a RefineNet-based architecture which is
fine-tuned on synthetic cluttered scenes containing captured images of the unseen
items before each competition run [25].

5.2 Perception Hardware

An Intel RealSense SR300 RGB-D camera is employed on the wrist as our main
sensor. This allows to move the camera actively in the workspace, a feature we
exploited by implementing a multi-viewpoint active perception approach described
in Sect. 5.4.1. While the camera is light, has a small form factor and provides depth
images, a drawback is the infrared projection used to determine each pixel’s distance
from the sensor. It is unable to produce accurate depth information on black or
reflective items. We address this issue with the introduction of alternative grasp
synthesis techniques for these items (Sect. 5.5). Furthermore, a second RealSense
camera on the robot’s frame allows for additional classification of a picked item if
required.

In addition, scales are placed underneath the boxes and storage system to measure
the weight of the items. These added additional functionalities to perform object
identification and error detection. In terms of object classification they provide an
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addition parameter to verify the correct item is grasped, that it was not dropped, and
to detect when the end-effector has come into contact with an item.

A pressure switch is also included on the vacuum line to detect when a suction
seal is made, and to detect dropped items.

5.3 Semantic Segmentation

To perform object identification and detection a state-of-the art semantic segmenta-
tion algorithm was implemented. It is common practice to fine-tune existing neural
network models to specific tasks [8, 22, 26]. This is rather simple in cases where all
categories are known and defined beforehand, it is not such a common strategy for
tasks where the amount of available training data is very limited, as in the case of
the Amazon Robotics Challenge.

After testing various approaches we settled on a deep neural network architec-
ture, RefineNet [14] is able to adapt to new categories using only very few training
examples. We use RefineNet for pixel-wise classification, and a custom vision-
based (as opposed to model-based) grasp selection approach. We argue this to be
a more robust and scalable solution in the context of picking in cluttered warehouse
environments than those based on fitting models or 3D shape primitives, due to
issues with semi-rigid, deformable, or occluded items. The semantic segmentation
provides the link between a raw image of the scene and grasp synthesis for a specific
object.

5.3.1 Fast Data Collection and Quick Item Learning

Due to the time-critical nature of learning the unseen items during the competition,
we developed a semi-automated data collection procedure which allows us to collect
images of each unseen item in 7 unique poses, create a labelled dataset and begin
fine-tuning of the network within approximately 7min. Our procedure is as follows:

• Position the wrist-mounted camera above the Amazon tote in the same pose as
it would be in during a task.

• From an ordered list, place one unseen item in each half of the tote.
• Maintaining left/right positioning within the tote, change the orientation and
position of each item 7 times and capture an RGB image for each pose.

• Using a pre-trained background model, automatically segment each item to
generated a labelled dataset. Each automatically generated training image is
manually checked and corrected where necessary.

• The new dataset is automatically merged with the existing dataset of known
items.

• The RefineNet network is fine-tuned on the combined dataset until shortly
before the beginning of the official run approximately 30–35min. later.
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Fig. 7 Mean F0.5 score of fine-tuned RefineNet when trained on varying numbers of images for
each unseen item. The time includes data capture and training time. For the competition, we used
7 images per unseen item, trained for 13 epochs

Our data collection procedure is a trade-off between time spent on capturing data
and available training time. Figure 7 shows the relative network performance for
different splits between number of images captured per unseen item and training
time. The performance scores are calculated on a set of 67 images representative
of those encountered in competition conditions, with a mixture of 1–20 seen and
unseen items in cluttered scenes. For the competition, we opted to use 7 images
per unseen item, which allows enough time to repeat the data capture procedure if
required.

The selection of the metric to be optimised is quite important. We use the F0.5
metric to evaluate the performance of our perception system as it penalises false
positives more than false negatives, unlike other commonly used metrics such as
IOU or F1 which penalise false positives and false negatives equally. We argue that
the F0.5 metric is more applicable for the application of robotic grasping as false
positives (predicted labels outside of their item/on other items) are more likely to
result in failed grasps than false negatives (labels missing parts of the item) (Fig. 8).

As a compromise to cluttered scenes, we opted to capture the images of each new
item without clutter, but with as many other commonalities to the final environment
as possible. To achieve this, each item was placed in the actual tote or storage
container with the camera mounted on the robot’s wrist at the same height above
the scene as during a run. Each item was manually cycled through a number of
positions and orientations to capture some of the variations the network would need
to handle.
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Fig. 8 An example illustrating the importance of different measures for grasping applications.
Top: The object is undersegmented and the robot may pick a wrong item if a pick is executed in
the segmented region. Bottom: only half of the entire object is segmented correctly. Yet F1 and
IoU scores are very similar scores as in the above example. The F0.5 score is higher than in the
above example. We argue the F0.5 is therefore more informative and more suitable for creating
correct grasp points and successfully manipulate the objects. We argue that the F0.5 measure is
more informative. Note that precision would also be indicative of success in this example, but
should not be used in isolation because it loses information about recall

To speed up the annotation of these images, we employ the same RefineNet
architecture as outlined above, but trained on only two classes for binary fore-
ground/background segmentation. After each image is captured, we perform a
foreground and background separation. We parallelise this approach by placing
two items in the tote at any time. Labels are automatically assigned based on the
assumption that the items in the scene match those read out by a human operator
with an item list.

During the data capture process, another human operator visually verifies each
segment and class label, while manually correcting any flawed samples before
adding them to the training set. After a few practice runs, a team of four members
are able to capture 7 images of 16 items in approximately 4min. Three more minutes
are required to finalise the manual check and correction procedure.

An in-depth analysis of our RefineNet quick-training approach and a comparison
with an alternative deep metric learning approach are provided in [18].

5.3.2 Implementation and Training Details

Training is performed in two steps. Our base RefineNet model was initialised with
pre-trained ResNet-101 ImageNet weights and initially trained for 200 epochs on a
labelled dataset of approximately 200 images of cluttered scenes containing the 40
known items in the Amazon tote or our storage system and an additional background
class. Note that the final softmax layer contains 16 (or 10 for the stow task)
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placeholder entries for unseen categories. Upon collecting the data as described
above, we fine-tune the model using all available training data for 20 epochs within
the available time frame using four NVIDIA GTX 1080Ti GPUs for training. Batch
size 1 and learning rate 1e−4 is used for the initial fine-tuning stage, batch size 32
and learning rate 1e−5 is used for the final fine-tuning stage. It is important to note
that we also exploit the available information about the presence or absence of items
in the scene. The final prediction is taken as argmax not over all 57 classes, but only
over the set of categories that are assumed to be present.

For a more in-depth analysis and comparison of the object detection system
readers are referred to our tech report [18].

5.4 Active Perception

For the stow task, where all items have to be picked, we prefer picking non-occluded
items at the top of the tote, which counteracts the tendency for our perception
network to exhibit lower precision in more cluttered scenes. However, for the pick
task, where only a subset of items have to be picked, it is likely that not all wanted
items are easily visible within the storage system. In this task, we use two active
perception methods to increase the chances of finding all of the wanted items.

5.4.1 Multi-View

For each storage compartment, there are three possible camera poses; one top view
capturing the entire storage compartment, and two close-up views covering half of
the storage compartment each. If no wanted objects are visible from the top view, the
two close-up views are used, leveraging the adjusted camera viewpoint to increase
the chances of finding any partially obscured items, and reducing the effective level
of clutter thereby improving the performance of our perception system on the scene.

5.4.2 Item Reclassification

To be sure of a grasped object’s identity, our system requires consensus from
two sensors. The first is by the primary visual classification. Secondly, when a
grasped item is lifted, the weight different measured by the scales is used to
confirm the object’s identity. If the measured weight does not match, one of the two
reclassification methods is used. If the measured weight matches only one item in
the source container, then the item is immediately reclassified based on weight and
the task continues uninterrupted. Alternatively, if there are multiple item candidates
based on weight, the item is held in view of the side-mounted camera to perform a
second visual classification of the item. If the item is successfully classified as one
of the candidates, it is reclassified and the task continues. If no suitable classification
is given, the item is replaced and the next attempt begins.
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5.5 Grasp Synthesis

The function of the grasp synthesis sub-system is to provide a final pose at which
the robot should position its end-effector to successfully grasp the desired item. Our
grasp synthesis assumes that the desired object is segmented and will rank possible
grasp points on the point cloud segment (Fig. 6) using a hierarchy of approaches.
For our vision-based grasp synthesis system, the material properties of an item are
of particular importance as they affect the quality of the depth information provided
by our camera. To handle a variety of cases, three different grasp synthesis strategies
were developed: surface-normals, centroid, and RGB-centroid. If one method fails
to generate valid grasp points for an item, the next method is automatically used
at the expense of precision. For items where the visual information is known to be
unreliable, item meta-data can be provided to weigh specific methods more.

We again use vacuum suction as the primary mode to pick an item, as such we
base our grasping pipeline on previous work [11]. The heuristic based ranking is
taking into account geometric and visual information, such as distance from edges
and the local surface curvature. Some additional end-effector specifics are taken into
account as well during the ranking process, e.g., angle to vertical and distance to the
workspace edges. This design helps to ensure sensible suction points are ranked
high and can be reached with our robot configuration.

If the quality of the point cloud is not allowing for valid grasp points to be
detected, as is common with reflective and transparent objects, we approximate
the centroid of the available depth points and select it as the grasp point. This
method relies on the compliance of the end-effector hardware and the design of
both grasping mechanisms which were designed specifically to handle the possible
range of objects in the most robust way.

In the worst case, if no valid points are detected in the point cloud, which is
most common with black objects, we approximate the centre of the object using its
position in the RGB image and estimate a grasp point using the camera’s intrinsic
parameters. This relies on the design of the end-effector to handle uncertainty in the
grasp pose, as well as the mentioned extra sensing modalities of suction detection
and weight sensors for collisions.

To grasp an object with the parallel gripper a similar approach including most of
the same heuristics was developed. Most importantly, the extra information about
the orientation of the object is taken into account to place the gripper in the correct
orientation. As a result, the parallel-gripper grasping pipeline requires only one
extra processing step compared to the suction system, a simple principle component
analysis of the item’s RGB segment and align the gripper accordingly.

One aspect of the grasping system which sets Cartman apart from other
participants is the ability to execute multiple grasp attempts sequentially. For suction
grasps, the 3 best, spatially diverse grasp points are stored, and if suction fails on one
the next is automatically tried without having to perform another visual processing
step, increasing the chances of succeeding in the grasp and increasing overall system
speed.
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6 Design Philosophy

Our design was driven by the constraints set by the challenge, such as the limits
of the workspace, objects to be handled, and the overall task description. Our
approach was to test the whole system in challenge-analogue conditions to validate
the progress of the overall system, not sub-systems. This integrated design approach,
as we are defining it, is one that favours testing of the entire system end-to-end,
using the performance of the system as a whole to drive sub-system design. This
is contrary to the more commonly used modular system’s design approach which
favours the design and testing of sub-systems in isolation, which are then, much
like a puzzle, fitted together to create the wanted system.

6.1 End-to-End Testing

The frequent end-to-end system testing and the achieved mock scores allowed us
to identify the bottlenecks and focus design efforts towards areas that would lead to
the largest gain in competition performance. The holistic view of the system enabled
design updates to include both software and hardware, as opposed to focusing on
the performance of individual sub-systems.

To facilitate rapid hardware testing and integration, rapid prototyping and
manufacturing techniques, such as 3D printing and motors with modular mounting
options, were employed. This allows for cheap and flexible exploration of new
designs as well as the ability to easily produce spare parts in case of failure.

For example, our hierarchical grasp detection algorithm was designed to work
with varying levels of visual information. This fully custom design is the result
of our integrated design methodology, in which both hardware and software were
developed in parallel, with an emphasis on end-to-end system testing throughout the
design process, leading to an approach that covered most use cases robustly.

6.2 Modularity

While focus was put on the whole system, we still designed our software and
hardware with modularity in mind, making it possible for sub-systems to be
developed independently, and easily integrated into the system without requiring
changes to higher-level systems. In the case of software, sub-systems largely
conform to pre-defined ROS message types throughout development, an example
being the perception system which saw major iterations before a final solution was
found. Similarly, changes to the manipulator or Cartesian gantry system can be made
and easily integrated into the robot’s model, leaving higher-level logic unaffected.
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6.3 Rapid Iteration

Iterative design is core to the development of our system. Tasks were broken into
weekly sprints, and individual design teams were expected to deliver solutions that
could be integrated and tested on the system, a process facilitated by our modular
design practices. This process results in a higher overall integrated system up-time
and allowed the team to focus on testing and evaluating the complete system, and to
rapidly improve the design at a system or sub-system level as required.

By designing a fully custom solution, we overcame a major disadvantage
reported by teams in previous challenges of being locked into the functionality of
off-the-shelf components [4]. Our design comprises many commonly available parts
such as the frame and rails for the Cartesian gantry system, simple machined parts,
and a plethora of 3D printed parts. As such, many aspects of our design are able to
be integrated, tested, and re-designed within hours or days.

7 System Performance

An exhaustive testing of the whole system was performed throughout the devel-
opment phase as mentioned above. In particular, we were interested in simulating
scenarios we would expect to see during the challenge in Japan. This system level
testing led to a large focus on robustness and error recovery in developing high-
level logic for Cartman. Herein we present the results during the Amazon Robotics
Challenge finals, as well, as a long-term test of the robot during a robotics event on
campus.

7.1 Amazon Robotics Challenge Finals

The finals task of the Amazon Robotics Challenge is chosen as a benchmark for
comparison. While all teams received a different set of items, similar object classes
were chosen by the Amazon team to be of equal difficulty.

Table 1 compares Cartman’s performance in the finals task to the other teams’
systems, recorded by matching video footage of the competition with score-sheets.
Due to the wide range of strategies used by different teams and the complex
environment of the challenge, it is difficult to directly compare the performance
of different systems as a whole in the context of the challenge except by points.
However, to highlight the strengths and weaknesses of different systems, three
metrics for the different aspects of system performance are presented.

Grasp Success Rate The success rate of the system in executing a grasp attempt,
regardless of the item or the action performed with it. We counted success as lifting
an object, which may be for picking, item classification, or relocating moves.
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Table 1 Speed and accuracy of all systems during finals task and our long-term test (ACRV-LT)

Team Grasp success rate Avg. time Error rate Final score

Applied robotics 50% (3/6) 101 s 0% (0/2) 20
IFL PiRo 78% (18/23) 59 s 50% (7/14) 30
NAIST-Panasonic 49% (21/43) 35 s 33% (5/15) 90
MIT-Princeton 66% (43/65) 25 s 0% (0/15) 115
IITK-TCS 79% (19/24) 40 s 15% (3/20) 170
Nanyang 53% (23/43) 32 s 4% (1/25) 225
NimbRo picking 58% (33/57) 29 s 0% (0/22) 235
ACRV 63% (33/52) 30 s 4% (1/23) 272
ACRV-LT 72% (622/863) 30 s N/A N/A

Average Time per Attempt The time from finishing an action with one item to
finishing an action with the next, averaged over all actions. It takes into account
perception, motion planning, grasp execution, and movement.

Error Rate We define the error rate of the system as the ratio of number of penalties
(incorrect item labels, incorrect items picked, dropped/damaged items, etc.) incurred
to the total number of items stowed and picked during the round. It is indicative of
the overall system accuracy.

While having a high grasp success rate, low execution time and low error rate are
all desirable aspects of an autonomous robot, Table 1 shows that no one metric
is a good indicator of success. Figure 9 shows the points accumulated by each
team throughout the finals task of the competition, including any penalties incurred,
and highlights some of the key differentiating aspects of the teams. Performance
is most consistent between teams during the stow task, with the top five teams
stowing roughly the same number of items at a similar, constant rate. The main
separation in points is due to the pick task. For each team, the rate of acquiring
points decreases throughout the pick task, as the difficulty of remaining items and
the chances of items being occluded increase, causing many teams to abort their
attempt early. It is here that we attribute our design approach and our system’s
overall robustness to our win. During the finals round, our system relied on item
reclassification, misclassification detection, failed grasp detection, and ultimately
our active perception approach to uncover the final item in the pick task, making us
the only team to complete the pick task by picking all available order items.

7.2 Long-Term Testing

To test the overall performance of the system, Cartman was run for a full day,
performing a continuous finals-style task, where the pick phase was used to replace
all items from the storage system into the tote. 17 items were used, consisting
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Fig. 9 Points accumulated by each team throughout their finals run, recorded by matching video
footage of the competition with score-sheets. Triangles indicate the transition from stow to pick
and circles indicate the end of a run. Stars indicate bonus points for completing the pick task with
time remaining

of 13 items from the Amazon item set and 4 unseen items from the ACRV
picking benchmark set [13]. The 4 unseen items were a soft, stuffed animal
plush_monkey, a reflective, metallic pet’s food bowl pets_bowl, a scrubbing
brush utility_brush, and colourful squeaky pets toys squeaky_balls,
which were chosen for their similarity to unseen items provided by Amazon during
the competition. The 17 items were chosen to provide a range of difficulties as well
as cover the spectrum of object classes that were available both physically (rigid,
semi-rigid, deformable, and hinged) and visually (opaque, partially transparent,
transparent, reflective, and IR-absorbing), ensuring that the full range of Cartman’s
perception and grasping abilities were tested. Nine of the objects were acquired
using suction and 8 by the gripper. Arguably the hardest item in the Amazon set, the
mesh cup, was not included as Cartman was unable to grasp this item when it was
on its side.

In 7.2 h of running time, Cartman completed 19 stow and 18 pick tasks, during
which 863 grasping attempts were performed, 622 of which were successful (72%
success rate, ACRV-LT in Table 1). Throughout the experiment, 10 items were
incorrectly classified without automatic correction, requiring manual intervention
to allow the system to complete a task and continue with the next. On one occasion
the system had to be reset to correct a skipped drive belt.

The overall grasping success rates per item are shown in Fig. 10. Grasp attempt
failures were classified as failed grasp, where the item was not successfully sucked
or gripped, dropped item, where the object was successfully sucked or gripped
but then dropped before reaching its destination, weight mismatch, where an item
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Fig. 10 Grasp success rates for the 17 items using during long-term testing

was grasped but its weight did not match that of the target object, or incorrect
reclassification, where an object was successfully grasped but was incorrectly
reclassified as a different item based on its weight.

The 168 failed grasp attempts can be further categorised by their primary cause,
either perception, where the failure was caused by an incorrect or incomplete
segmentation/identification of the object (27.6%), physical occlusion, where the
object was physically occluded by another, resulting in a failed grasp attempt
(10.3%), unreachable if the object was in a pose which was physically unobtainable
by our gripper such as a small object resting in the corner of the storage system
or tote (7.5%), or grasp pose failure if the object was correctly identified and
physically obtainable and the grasp failed anyway (54.6%). Forty percentage of all
failed grasps were on the challenging fiskars_scissors item, indicating that
our manipulator or grasp point detection could be improved for this item.

7.3 Error Detection and Recovery

Like with any autonomous system designed to operate in the real world, things
always can and eventually will go wrong. As such, the robot’s sensors are monitored
throughout the task to detect and automatically correct for failures, such as failed
grasps, dropped items, and incorrectly classified or re-classified items. During the
long-term testing described in Sect. 7, only 4% (10 out of 241) of failures were not
corrected, requiring manual intervention for the robot to finish a task. These failures
were caused by grasping an incorrect item that happened to have the same weight
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as the wanted item, picking two items together and reclassifying by weight as a
different item, or dropping the item outside the workspace.

Cartman’s actions are heavily dependent on having an accurate internal state
of the task, including the locations of all items. As an extra layer of redundancy,
towards the end of a task, the system begins to visually double-check the location of
items. If an item is consistently detected in the wrong location, the system attempts
to correct its internal state based on visual classification and a record of any previous
item classifications. This is possible due to the false negative rate of our classifier
being lower in uncluttered scenes encountered at the end of a run.

8 Conclusions

Herein we presented Cartman, our winning entry for the Amazon Robotics Chal-
lenge. We attribute the success of our design to two main factors. In particular, we
describe the key components of our robotic vision system, in particular:

• A 6-DoF Cartesian manipulator, featuring independent sucker, and gripper end-
effectors.

• A semantic segmentation perception system capable of learning to identify new
items with few example images and little training time.

• A multi-level grasp synthesis system capable of working under varying visual
conditions.

• A design methodology focused on system-level integration and testing to help
optimise competition performance.

Firstly, our method of integrated design, whereby the robotic system was tested
and developed as a whole from the beginning. Secondly, redundancy in design.
This meant that limitations of individual sub-systems could be overcome by design
choices or improvements in other parts of the system.
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