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Abstract— Visual reaching and grasping is a fundamental
problem in robotics research. This paper proposes a novel
approach based on deep learning a control Lyapunov function
and its derivatives by encouraging a differential constraint in
addition to vanilla regression that directly regresses indepen-
dent joint control inputs. A key advantage of the proposed
approach is that an estimate of the value of the control
Lyapunov function is available in real-time that can be used
to monitor the system performance and provide a level of
assurance concerning progress towards the goal. The results
we obtain demonstrate that the proposed approach is more
robust and more reliable than vanilla regression.

I. INTRODUCTION
Reaching, the process of moving a manipulator to a target

pose defined relative to an observed environment, is a funda-
mental problem in robotics [1]. Performing reaching tasks in
unstructured environments requires the system to explicitly
or implicitly estimate the target pose of the manipulator using
sensor input. Early work [2], [3] demonstrated the potential
of vision as a sensor modality for reaching tasks and led
to the field of visual servo control [4], [5]. One of the
first approaches considered was to explicitly estimate target
pose from vision input and then implement a classical pose
controller to servo control the manipulator to the estimated
pose [6]. Modern approaches that follow a similar philosophy
use learning based pose estimation to identify grasp points
[7], [8], [9], [10], [11] followed by classical control. Most
recent work estimates target pose using RGBD sensors that
provide depth information of the scene as well as the classical
RGB images [12], [13], [14], [15]. A key challenge for such
architectures is dealing with occlusion of the object by the
manipulator end effector during grasping. Albeit that images
including both end effector and object contain strong cues
of relative pose important to the grasping problem.

Alternatively, control commands can be directly computed
from images. Early works in this direction use hand-crafted
image features and control the motion of the manipulator
(camera) by linearising the image Jacobian [4]. This ap-
proach eliminates the necessity of using geometric object
models to compute pose targets and reduces error in sensor
modelling [6]. Modern algorithms that follow this philosophy
use deep learning to learn the mapping from images to
control (visuo-motor policy) end-to-end. Zhang et al. [16]
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Fig. 1. We train a convolutional neural network to approximate a control
Lyapunov function (cLf) to enable a robot to reach and grasp a coloured
cube. We validated the performance of our approach in simulation and real-
world experiments.

achieve closed-loop reaching tasks by learning visuo-motor
polices from monocular RGB images, although the mid-
level regressor is pre-trained to estimate three Degrees of
freedom target position. Levine et al. [17] learn a visuo-
motor policy generated from trajectory-centric reinforcement
learning algorithm with a CNN. One common issue with end-
to-end visuo-motor policy learning is the regression targets
for each joint control input are considered as approximating
individual functions. This ignores the structural constraint
that all joints are contributing to the end effector pose via
manipulator’s kinematic chain. Furthermore, such systems
are unable to evaluate the quality of inferred control inputs.
Levine et al. [18] and Viereck et al. [19] use CNNs to predict
the quality (with respect to a grasping metric) of a collection
of possible motion proposals and then choose the best action
to achieve the goal at the cost of increasing inference time.

From a system and control theory perspective closed-loop
reaching is a set-point regulation task. That is, one seeks a
feedback law that makes the resulting autonomous closed-
loop system globally exponentially stable with equilibrium
at the desired pose. Any exponentially stable autonomous
system admits a continuously differentiable positive definite
Lyapunov function that decreases exponentially along solu-
tions of the system [20]. A standard non-linear control design
methodology [21], [22] is to first design a candidate control
Lyapunov function (cLf) and then find a control law that en-
sures the exponential decrease of this function along closed-
loop trajectories of the system. To the authors’ knowledge, no
prior work has been done on using visual sensors to directly
learn control Lyapunov functions associated with a reaching
task.

In this paper we propose a CNN architecture to learn
the value of a control Lyapunov function for a multi-goal
visual reaching task as well as the differentials of this
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function with respect to the control parameters (joint angles).
The cLf differentials are then used as joint control inputs
according to classical non-linear control design principles.
Rather than just regress the six highly non-linear functions
associated with the motion of each joint of the manipulator
individually (vanilla regression). We propose a regularisation
term that imposes a differential constraint between cLf and
its derivatives during network training.

The goals of the paper are:

• Firstly, to demonstrate multi-goal visual grasping from
a second person monocular camera feed using deep
learning.

• Secondly, to show that learning a control Lyapunov
function in concert with the control inputs results in ad-
ditional reliability and performance compared to vanilla
regression,

• Thirdly, to demonstrate learning the control Lyapunov
function provides an estimate of the progress towards
the goal during deep learned image based control and
improves reliability of the closed-loop system.

By multi-goal reaching we consider the problem where
there may be several equally ‘good’ possible reaching tasks
that the robot may choose between. Rather than solve this
problem in the classical ‘decide then act’ paradigm, where
one particular goal is chosen and then a servo control for that
goal is designed, we introduce a candidate control Lyapunov
function which has a minimum at each of the possible ‘good’
reaching goals. By designing the control to minimise the cLf,
the resulting behaviour is robust to changing environment
conditions, removal of the goal, movement of goal, etc. An
advantage of the proposed approach is that an estimate of the
value of the cLf is available in real-time during the servo-
control response. This value can be monitored and used as a
performance measure of the system operation and provides a
level of assurance concerning progress towards the goal. We
use the on-line cLf value estimate as a proxy for convergence
of the system and initiate a “hot swap” of the vision feed
from a global image to a focused image (consisting of just the
end effector and its local environment) when the cLf estimate
descends below a pre-fixed threshold to aid the precision
of the final stages of the servo-control task. The multi-goal
capability and robustness to changing environments of the
proposed approach is a key advantage that derives from
the control Lyapunov function methodology. In addition, we
demonstrate that by coupling the Lyapunov learning to the
control input learning in a natural manner we significantly
improve the reliability of the network compared to simply
learning the control input using an end-to-end vanilla re-
gression. We demonstrate the proposed performance through
successful completion of a simple reaching task for grasping
target cubes using only monocular vision from a second
person point-of-view, a difficult geometric reconstruction
task.

Section II presents the controller design. Section III de-
scribes the network architectures that we consider. In partic-
ular, we use a Siamese architecture to allow us to compute

numerical derivatives of the network output in order to
couple control inputs to the cLf intrinsically in the learning.
The implementation details and learning results are included
in Section IV. Section V documents an experimental study
that evaluates the method’s real-world performance against
direct end-to-end learning and simulation.

II. CONTROLLER DESIGN

This section presents the formulation of the control Lya-
punov function for a reaching task. Note that the cLf
definition can depend on any state of the manipulator or
environment that is appropriate. For instance, Khansari-
Zadehet al. learn a cLf for a reaching task based on human
demonstration [23]. We formulate a control Lyapunov func-
tion based on six Degrees of Freedom object pose that is
widely used in the literature.

A. Pose Representation

The six Degrees of Freedom (DoF) pose of the target
and end effector are represented by elements of the Special
Euclidean Group SE(3). Denote the pose of frame {A} with
respect to the reference frame {B} as

BXA =

[
BRA

BξA
0 1

]
∈ SE(3)

The left superscript is omitted if the pose defined with respect
to the world reference frame. Denote the end effector frame
as {H} and target frame as {G}. The absolute end effector
pose XH = XH(θ) is a function of joint angles θ ∈ R6×1,
that is, the forward kinematics model of the manipulator. The
relative pose of {G} with respect to {H} can be written

HXG(θ) = X−1H (θ)XG (1)

B. Control Lyapunov Function Formulation

A cLf for a reaching task is a continuously differentiable
scalar-valued positive-definite function V(θ) of the joint
angles that is zero only at the joint coordinates for the desired
pose. Consider a collection of goals {Gj} for j = 1, . . . , n.
The goal of a reaching task for a particular goal {Gj} is to
drive the target pose relative to end effector HXGj

(θ) to
the identity transformation. We define a control Lyapunov
function for that goal to be

Vj := ‖HXGj
− 14‖2F , for j = 1, . . . , n,

where 14 is the R4×4 identity matrix and ‖ · · · ‖F denotes
the Frobenius norm. In order to deal with multiple goals we
define a compound cLf

V := min{V1, ..., Vn}. (2)

The multi-goal control Lyapunov function considered has a
minimum (at zero) at each of the possible goals. Clearly, we
have introduced saddle points in the cLf, where a descent
criteria will separate system trajectory to either descend to
one goal or another. Such a switching surface is inherently
necessary in a multi-goal reaching task. However, we do not
require the robot to choose which goal to target in advance,
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and should the environment change during the reaching task,
by a goal being moved or removed, the Lyapunov function
will immediately conform to the new situation and the robot
will continue to move towards the ‘closest’ available goal.
This robustness to environment change is a highly desirable
aspect of the proposed control architecture.

C. Velocity Controller Design

Let ∂θV = (∂θ1V, . . . , ∂θ6V) ∈ R1×6 denote the vector
of partial differentials of the cLf (2). The velocity control
proposed is

θ̇i := −µ(t)∂θiV, for i = 1, . . . , 6 (3)

for a possibly time varying positive constant µ(t) > 0. With
this one has

V̇ = ∂θV · θ̇ = −µ(t)‖∂θV‖2,

where θ̇ = (θ̇1, . . . , θ̇6)>. The time-varying constant µ(t) is
chosen to condition the control response for large Lyapunov
values. This is particular important for a reaching task where
the quadratic nature of the Lyapunov function chosen would
lead to very aggressive control for large displacements. We
choose

µ(t) := min

{
1

V(θ)
, 1

}
,

that is, for small value of V the control is not effected, but
for large values of V the control is scaled down to be less
aggressive.

To compute the individual ∂θ terms we use the velocity
Jacobian J(θ) for the manipulator. That is, denoting the
angular and translational rigid body velocity of XH(θ)
expressed in the body-fixed frame by Ω and V respectively,
one has (Ω, V )> = J(θ)θ̇. Let

(
Ω
V

)∧
=


0 −Ω3 Ω2 V1

Ω3 0 −Ω1 V2
−Ω2 Ω1 0 V3

0 0 0 0

 ∈ se(3)

where se(3) is the matrix Lie-algebra of SE(3). Finally, we
introduce an inner product on se(3)

M =

(
13 03

03 η13

)
, (4)

for η > 0 a positive constant. The role of the inner product
is to relatively weight variation in translation directions
preferentially to rotations. Introducing a preferential weight-
ing is necessary since the geometry, of the UR-5 robotic
manipulator that we use, is such that relative small rotations
of the end effector generate moderately large displacements
of gripper position due to the offset of gripper tip from the
wrist joint. This can be offset by making the control more
aggressive in its translational components in the rigid-body
velocity. In particular, a rigid-body velocity generated by a
unit basis variation in i’th direction ei is transformed into a

variation MJ(θ)ei. With these constructions, then

∂θiV(θ) = 2tr
(

(HXGj
− 14)>(MJ(θ)ei)

∧
)
, (5)

for j = arg min{Vj(θ)}.

III. LEARNING THE CONTROL LYAPUNOV FUNCTION

Here we describe our approach to train a convolutional
neural network to learn the control Lyapunov function (cLf)
and its derivatives that will act as inputs for the closed-loop
system from vision input. Let D denote the set of images
from the vision sensor along with the robot joint angles.

D = {(I,θ) : I ∈ Rwidth×height×3,θ ∈ R6×1}.

The goal of the network is to approximate the functions V̂ :
D → R, and ∂̂θV : D → R6 using a regression network.

A. Network Architecture:

The proposed forward architecture for the network consid-
ered is shown in Fig. 2. The network can be split into three
different parts, including a feature extractor, a joint angle
decoder, and three fully connected layers.

Feature Extractor: The feature extractor is based on a
relatively small (compared to modern day networks) CNN
that was initially designed for image classification tasks,
ResNet18 [24]. ResNet18 has 18 layers, of which one is
a stand-alone convolutional layer, followed by eight convo-
lutions using 2-layer residual blocks each and a final fully
connected layer. For the proposed network architecture we
remove the last FC layer and feed the feature neurons directly
into the ‘norm and concatenate’ layer shown in Figure 2.
We use the pretrained weights of the ResNet18 network to
bootstrap.

The input image used is a monocular 224 × 224 RGB
image taken from the second person point of view. The out-
put feature used is the 512 value output from the ResNet18
architecture. Thus, one can write the output of the network
as a function

fφ(·) : R224×224×3 → R512

where φ represents the weights of a neural network in the
feature extractor.

Joint Angle Decoder: Instead of using joint angles θ as
inputs to the network [16] or learning its interpretation with
additional FC layers [25], [19]. we compute the forward
kinematics explicitly and use them as a geometric joint
feature descriptor. We do this by vectorising the six absolute
joint poses {X1, X2, ...,X6} to obtain an R72 vector that
has the physical joint positions and orientation vectors as
explicit elements:

g(θ) =
[
vec(R1) ξ>1 ... vec(R6) ξ>6

]
where vec(·) denotes the matrix vectorisation operand. Note
that the camera coordinates of the i’th joint is then the
projection (a linear operation) of three of the direct inputs to
the network, while orientation information is similarly direct
to compute in camera coordinates. The philosophy of this
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Fig. 2. Proposed regression network architecture. An RGB image I is
fed into a feature extractor to generate a 512 dimensional descriptor. The
joint angle decoder generates a 72 dimensional vector encoding the six joint
absolute poses. The two descriptors are normalised, concatenated, and fed
into the fully connected layers (FC). FC3 provides the 7 outputs consisting
of the cLf V̂(θ) and its 6 DoF partial derivatives ∂̂θV(θ)

approach is to save the network regressor from the need to
approximate the highly non-linear forward kinematics of the
manipulator.

Regressor: The three fully connected layers (using ReLU
activiations), containing 2048, 1024, and 7 neurons respec-
tively provides the regressor functionality for the network.
The final 7 neurons are mapped to the cLf V̂(θ) and its 6
DoF partial derivatives ∂̂θV(θ).

The network regressor hψ(·) can be expressed as a func-
tion

hψ(f̃φ(I), g̃(θ)) (6)

where ψ represents the weights of the FC part, and (̃·)
represents the vector normalisation operand.

Note that there is no explicit requirement that the network
outputs respect the differential constraint of the control
Lyapunov function from which they are derived; that is, there
is no explicit requirement that

V(θ+ ∆θ) ≈ V(θ) + ∂θV(θ) ◦∆θ (7)

inherent in the network architecture. This dependency must
be learnt by suitable choice of the loss function as discussed
in the sequel.

B. Learning approach:

A naive, but straightforward, approach is to train the
network using mean square error loss for both cLf and its
six partial derivatives. Such a loss can be formulated, for a
minibatch of m samples,

`D =
α

m

m∑
k=1

‖V̂k − Vk‖2F +
β

6m

m∑
k=1

6∑
i=1

‖∂̂θiVk − ∂θiVk‖
2
F

(8)
where α and β are positive weighting factors. This loss treats
each regressor as an individual objective and does nothing to
explicitly encourage the differential constraint from Eq. (7)
that couples the cLf value to its partial derivatives.

In essence the naive approach learns the given non-
linear control ∂̂θiV from scratch in an end-to-end network

architecture with vanilla regression method. In this case,
learning the cLf value provides no additional robustness or
reliability to the control, although it can be monitored during
the closed-loop operation of the system to as a real-time
performance measure.

C. Siamese Regressor

A key innovation of the proposed approach is the in-
troduction of a Siamese regression architecture in order to
explicitly encourage the differential constraint formulated
in Eq. (7) in the regression.

For small variation in the joint angles we assume that the
image obtained by the vision sensor will not vary signifi-
cantly. Thus, we propose the Siamese architecture shown in
Fig. 3 to use the same network weights φ for the feature
extractor, along with different joint angle inputs to generate
two separate values for the cLf. Let ∆θi ∈ R6×1 be a
small perturbation of the i’th joint angle. The output of
the perturbed joint angle V̂(I,θ + ∆θi) can be computed
separately for each of the i joint angle perturbations and
compared to the value V̂(I,θ) obtained for the unperturbed
joint angle measurements. For a GPU implementation this
sequential computation is achieved in a single forward pass
by stacking seven decoded joint vectors (one original and six
perturbed) along the batch dimension. Therefore it does not
significantly impact the computational cost of the learning
algorithm.

Based on this insight, we propose a loss term that encour-
ages the differential constraint (7), for a mini-batch with m
samples:

`C =
1

6m

m∑
k=1

6∑
i=1

∥∥∥∂̂θiVk(Ik,θk)−

V̂(Ik,θk + ∆θi)− V̂(Ik,θk)

∆θi

∥∥∥2
F
. (9)

Combining the direct regression loss (8) with (9) one obtains
a combined loss

L = `D + γ`C (10)

where γ is a positive weight parameter.
The combined loss as in Eq. (10) is motivated by both

the direct regression of the desired control, along with the
requirement to apply the differential constraint from Eq. (7)
explicitly in the network response to encourage the control
input acts to decrease of the Lyapunov function.

D. Hot-Swap

During initial experiments, we found that the closed-
loop response, although good for the macro motion of
the manipulator, was unable to provide sufficiently precise
positioning to achieve the desired reaching performance.
Instead of increasing the resolution of the full input image
of the network, we introduced an additional innovation in
the control design, to train a “local network” that focuses
on the near-end effector region. The philosophical concept
is one of focused attention; that is, when we are close to
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Fig. 3. Siamese regression for computing the ith contrastive loss term given input pair {Ik,θk}. Two identical regressors share the same weights and the
normalised image feature f̃φ(Ik). Regressor #1 infers current cLf and gradient; regressor #2 computes corresponding values after perturbation by applying
∆θi to its secondary input. The original and perturbed cLf is used to approximate the partial derivative with respect to θi numerical. The perturbed partial
derivatives from second regressor is discarded. The ith term of contrastive loss is computed as the squared L2 distance of the difference between inferred
and numerically approximated partial derivative

a successful goal, the network can focus on only the local
visual information. We do this by generating a local image
input, separate from the global image, that is focused on the
end effector of the robot (Fig. 4). This local image set is now
used to train a second ‘local’ network that contains detailed
visual information on the positioning task and is trained to
regress the same outputs as the global network. The idea is
to hot swap from the global network to the local network as
the manipulator reaches the neighbourhood of the goal. Since
both networks learn the same outputs the transition should
be smooth and seamless, although in reality we know that
numerical error will lead to some variation that will need to
be smoothed at transition.

An additional advantage of the approach is that the control
Lyapunov function value itself provides an ideal switching
condition to initiate the hot swap. We hot-swap to the local
network when the inferred cLf is lower than a designated
threshold ζ. We introduce a small hysteresis, that the cLf
value remains below an augmented threshold, V ≤ (ζ +
ρ), for a small constant ρ > 0 to ensure smooth control
handover. The convergence assurance provided by the cLF
guarantees that the zoomed-in image will contain at least one
target when control hand-over is triggered.

The local network uses an identical architecture to the
global network but is trained only on zoomed-in images.

Fig. 4. The global and local network utilise different information from the
same input image. The local network reduced the amount of information
aby zooming onto the end effector region.

Zooming to the local region relies on coarsely calibrated
camera extrinsic parameters. We compute the projection of
the 3D end effector pose (using the given joint positions and
the forward kinematics) onto the image plane. A 130× 130
region is cropped based on the projected coordinate from the
original 1280× 768× 3 raw camera image (see Fig. 4). The
image is then upscaled to 224 × 224 to match the network
input size. With global and local cLf regression network
running in parallel, we are still able to achieve a 35Hz closed-
loop control on average on a single GPU (GTX 1080 Ti).

IV. IMPLEMENTATION

To perform the reaching and grasping experiments, we use
a Universal Robot UR5 6 DoF manipulator with Robotic
Adaptive 2f-140 gripper. The vision sensor is a Chameleon3
RGB Camera with resolution set to 1280×768. The camera
is approximately 1.6m high from the floor, 1.7m away from
the manipulator base joint and inclined forward 21◦ towards
the manipulator workspace (Fig. 5). Camera, manipulator and
gripper communicate with the computer using ROS [26].

Collecting real-world manipulator data is a costly process
[18]. Training a network with large-scale simulated dataset

Fig. 5. Lab environmental set-up. The end effector shown is at the default
home position. The camera’s optical centre, table surface centre, and UR5
base joint are aligned.
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is a viable alternative to collecting large sets of real world
data [16], [19], [27]. We replicate the real-world set-up in
Gazebo7 [28], as it is able to provide consistent ROS control
between simulator and the real hardware. The simulator’s
configuration is geometrically identical (within measurement
error) to that of the lab and differs only visually. The
simulated camera is an ideal camera model with focal length
set to that of the real camera’s. Shadow rendering is turned
off due to Gazebo7’s inability in rendering realistic shadows
under multiple light sources.

A. Dataset Collection

In this work, we use up to three identical targets to
generate the multi-goal scenarios we consider. Each target
has 70% probability of appearing in the workspace (1×0.4m
on the table infront of the robot) for any given scenario. The
location and rotation around Z axis for each target is sampled
from uniform distributions.

The methodology used to sample the location of the
manipulator in the training set makes a significant difference
to the accuracy of the resulting network approximation. It
is important to sample many times in the neighbourhood of
the goal in order that the cLf and its derivatives are well
modelled in the region in which the cLf is most structured,
around its minimum. Further out from the goal the sampling
can be much more coarse and achieve the same closed-
loop performance. With a single target, we uniformly sample
a fixed number of end effector positions on semi-spheres
centred on the targets’ centroid. For the global network,
half of semi-spheres’ radius are sampled from a zero mean
normal distribution, the other half is sampled from uniform
distribution between interval with lower bound set to zero.
For the local network, the standard deviation of normal
distribution and the upper bound of uniform distribution are
reduced accordingly. At each end effector position, the Euler
angles of the end effector frame are sampled on three sepa-
rate uniform distributions with upper bounds constrained so
that the end effector always pointing downwards. To handle
multiple targets, we select one of the targets at a time and
sample as above for that target, and repeat for the remaining.
After collecting all end effector pose proposals, each full 6
DoF pose is verified by solving inverse kinematics.

B. Learning Details and Results

The dataset for training global cLf regression network has
140,000 simulated images, while the dataset for the local
network has 35,000 samples. We train our networks with
90% of the training dataset and keep the remaining 10% for
evaluation.

We apply random cropping, rotation, and colour jittering
during training to provide for better real-world hardware
calibration error tolerance. We randomly crop from the
original image a 180 × 180 pixel patch and upsample it
back to maintain the same input size to the network. The
image is randomly rotated between −3◦ and 3◦ after random
cropping. The brightness, saturation, contrast and hue of the
input images randomly jitter at maximum 10%. The weights

Network
Focus

Regress
Method

Root Mean
Square Error

Mean Relative
Error

V̂(θ) ∂θV̂(θ) V̂(θ) ∂θV̂(θ)

Global Siam. 0.27 0.99 0.14 2.14
Dir. 0.32 1.07 0.12 1.60

Local Siam. 0.05 0.28 0.14 0.55
Dir. 0.04 0.28 0.10 0.55

TABLE I
RESULTS FOR GLOBAL AND LOCAL NETWORKS SEPARATELY BEING

TRAINED WITH BOTH SIAMESE AND DIRECT REGRESSION EVALUATED

ON GLOBAL AND LOCAL DATASETS

φ of the feature extractor are initialised from ResNet18 [24]
pre-trained on ImageNet [29]. The network is implemented
in Pytorch, and trained using Adam [30] optimiser for 80
epochs with batch size set to 64. The learning rate starts from
1×10−3 and is halved when the evaluation loss plateaus for
5 epochs.

In the Siamese loss `C (Eq. (9)), we set ∆θ = 0.05 for all
six joint angles. The numerical differentiation method that
is inherent in this approach inevitably introduces numerical
error in the loss function that will tend to degrade the
learning response. This is particularly the case when the
Lyapunov function approaches a minimum and the 0.05 fixed
displacement becomes large with respect to the variation in
function value. In future work we intend to study whether
more efficient methods to learn a differential constraint such
as (7) are possible, however, for the moment we set the
scaling factor γ in Eq. (10) is set to 0.5 for the global network
and 0.1 for the local network. For both cases, the scaling
factor α, β for cLf and gradient loss terms in in Eq. (9) are
set to 1 and 6 respectively.

To compare our approach with vanilla regression, we
separately train both global and local networks using direct
regressing loss function `D from Eq. (8). The training is done
on the identical training set, with identical parameters apart
from the single parameter γ = 0 that ‘turns off’ the cost
associated with (7).

Table I shows the learning evaluation results of the of four
different networks: global and local networks trained with
Siamese regression and direct regression loss functions. The
training process for all four models stops after the evaluation
loss plateaus. The results are shown in Table I. The Root
Mean Square Error is the standard least squares error criteria,
and is good at providing an overall indication of the quality
of the estimation. The Mean Relative Error (MRE) is

MRE =
‖V̂k(Ik)− V(θk)‖

‖V(θk)‖
provides a better measure of the error relative to structure
in the cLf and is important in evaluating the approximation
close the target goal. We conclude from this statistical results
firstly that both the global and local networks learn effec-
tively, and secondly that there is no significant difference in
the quality of learning with or without the proposed differ-
ential constraint. However, the second observation conflicts
with the grasping experiments performed in both simulator
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and real-world. This observation is further discussed in the
next section.

V. EXPERIMENTS AND RESULTS

Here we explain our experimental study that evaluates
the method’s simulated and real-world performance against
vanilla regression method.

A. Siamese versus Direct Vanilla Regression

We perform two sets of real-world closed-loop servoing
experiments to evaluate the performance of the proposed
scheme, and to compare the Siamese and vanilla regression
methods to evaluate the advantages of the Siamese network.
The velocity control input is directly computed from the
derivative outputs from the respective networks and Equation
(3). The hot swap condition was taken from the value of the
cLf.

Each set has 30 random samples – ten for one, two,
and three targets respectively. For each sample, we test
both Siamese and vanilla regression methods (with hot-
swap mechanism) with only one grasp attempt. Two sets
of experiments are performed under natural and artificial
lighting conditions during daytime a night-time respectively.

A key observation of the implemented control is that the
vanilla regression closed-loop system does not necessarily
converge. There were numerous cases, 7 during simulation
trials and 14 during real-world experiments (Table II) where
the manipulator simply diverged from the goal under directly
regressed closed-loop control. The most common failure
mode was when the manipulator retracted towards the base,
maintaining the end effector in the image, but pulling back
until the workspace limits were reached. In contrast to this,
the Siamese regression closed-loop response never diverged
from the goal. We claim this is a direct consequence of the
inherent robustness derived from enforcing the differential
constraint (7).

A good benchmark for the six DoF reaching task is
whether a grasp, made after convergence of the closed-loop
reaching control, is successful. A successful grasp requires
high precision positioning in both translation and rotation
components of the gripper. Neither of the methods were
infallible, even in simulation, under perfect conditions. We
believe the baseline performance could be improved by using
a more sophisticated network, however, the performance is
sufficient to indicate the potential of the approach.

During daytime, Siamese and vanilla regression method
achieved 80 ± 7.3% and 63.3 ± 8.8% grasp success rate
respectively. Mean and standard deviation of the binomial
distributions are computed using the standard minimum
likelihood mean and variance estimators. During nighttime,
the grasp success rate of directly regressed network degraded
significantly, dropping to 26.7 ± 8%. In comparison the
Siamese regression maintained similar performance to the
day level at 76.7 ± 7.8%. The combined grasping results
from two sets of experiments taken across a range of day and
night conditions are given in Table II. Overall, the Siamese
regression method achieves 78.3 ± 5.4% grasp success rate

compared to the vanilla regression method at 45± 6.4%. A
two-sample t-test demonstrates greater than 99% confidence
that the Siamese regression response outperforms the vanilla
regression response.

From these results we conclude that design based on a
control Lyapunov function and implementing a loss that
encourages the differential constraint (7) leads to a significant
improvement in grasping efficiency.

We also evaluated the reaching error in terms relative pose
error GXH . That is the mean accuracy of the final position
achieved by the gripper, just prior to attempting to grasp
(Table II). The displacement is measured in cm and the
rotation error is measured in degrees in Euler angles. In order
that these results are sensible, we excerpted the divergent
cases from the vanilla regression response, as these would
have adversely biased the comparison of precision. Compar-
ing the statistical results from the real-world experiments in
Table II, we find the performance difference, in terms of
precision, between two regression methods are insignificant.
The relative difference between average positioning error for
the two methods is general several times smaller than the
estimated error. Considering that both methods are effectively
learning the same control law, this is not surprising.

Note that the learning evaluation results in Table I also
shows no significant difference between two regression
method during learning. We find this result interesting as it
demonstrates that the measure of robustness for visuo-motor
policy learning tasks is not easily visible in the statistical
metrics that are commonly used in deep learning. It is
also possible that the main advantage that could be gained
by the differential constraint in precision is compensated
adversely by the addition noise introduced in approximating
the different of V̂(θ) numerically.

B. Real-world Performance Degradation

In order to evaluate the performance difference between
simulation and real-world, we repeat the same 60 trails
in the simulation, including 20 for one, two, and three
targets, using networks trained with both Siamese and vanilla
regression methods in the simulation. The statistical results
of these trials are shown in Table II. The statical results do
not show significant differences between the real-world and
simulation in terms of mean errors indicating that there is
no bias between simulation and real-world response. How-
ever, the standard deviation in precision for the simulation
is consistently smaller, especially associated with the yaw
angle positioning. It is clear that the simulation response
is significantly better, however, considering that no sim-to-
real transfer learning techniques has been utilized we were
encouraged by the relatively moderate depredation in grasp
performance for the Siamese regression: grasp success rate
drops from 95 ± 2.28% to 78.3 ± 5.4%. In contrast, the
network trained by direct regression starts from a lower
base 75 ± 5.6%, and drops by nearly half in performance
45±6.4% when run on real data. Once again, we claim that
the underlying robustness of the cLf approach has lead to
the observed performance advantage.
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x (cm) y (cm) z (cm) roll (◦) pitch (◦) yaw (◦)
# Failed
Grasps

#
Diverge

Real
Siam. −0.6± 4.7 0.1± 4.9 1.1± 2.4 6.3± 5.8 −0.7± 3.8 −2.7± 26.3 13/60 0/60
Vanilla. −0.7± 9.9 −2.2± 5.2 −0.5± 2.1 3.6± 5.4 −1.5± 4.1 −9.8± 17.5 27/46 14/60

Sim
Siam. −0.2± 1.5 −1.3± 1.6 0.7± 1.3 7.8± 5.3 −0.8± 4.2 −1.7± 7.9 3/60 0/60
Vanilla. −0.3± 1.2 −1.3± 1.4 0.01± 1.06 6.2± 4.6 −0.5± 4.0 −0.8± 6.6 45/53 7/60

TABLE II
STATISTICAL RESULTS OF 60 GRASPING EXPERIMENTS (20 SAMPLES FOR ONE, TWO, AND THREE INSTANCES) IN REAL-WORLD AND SIMULATION

USING BOTH SIAMESE AND VANILLA REGRESSION NETWORK WITH HOT-SWAP. THE POSE ERRORS ARE COMPUTED ONLY FOR CONVERGED CASES.

VI. CONCLUSIONS

This paper proposes a novel approach to learning control
inputs from vision sensors for reaching tasks. The key
contributions were: firstly, to demonstrate multi-goal visual
grasping from a second person monocular camera feed using
deep learning, secondly, to show that learning a control
Lyapunov function in concert with the control inputs results
in additional reliability and performance compared to vanilla
regression, and thirdly learning a control Lyapunov function
provides an estimate of the progress towards the goal during
deep learned image based control.
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Control. London: Springer-Verlag, 1997.

[23] S. Mohammad Khansari-Zadeh and A. Billard, “Learning control
Lyapunov function to ensure stability of dynamical system-based robot
reaching motions,” Robotics and Autonomous Systems, vol. 62, no. 6,
pp. 752–765, June 2014.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” pp. 770–778, 2016.

[25] J. Leitner, A. W. Tow, N. Sunderhauf, J. E. Dean, J. W. Durham,
M. Cooper, M. Eich, C. Lehnert, R. Mangels, C. McCool, P. T. Kujala,
L. Nicholson, T. Pham, J. Sergeant, L. Wu, F. Zhang, B. Upcroft,
and P. Corke, “The ACRV picking benchmark: A robotic shelf
picking benchmark to foster reproducible research,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2017, pp. 4705–4712.

[26] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[27] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” arXiv
preprint arXiv:1710.06537, 2017.

[28] N. P. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator.” in IROS, vol. 4. Citeseer,
2004, pp. 2149–2154.

[29] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in 2009 IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPR Workshops). IEEE, pp. 248–255.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

4759

Authorized licensed use limited to: Monash University. Downloaded on August 09,2023 at 04:27:30 UTC from IEEE Xplore.  Restrictions apply. 


