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N recent years more and more complex humanoid robots have been devel-
I oped. On the other hand programming these systems has become more
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difficult. There is a clear need for such robots to be able to adapt and perform
certain tasks autonomously, or even learn by themselves how to act. An im-
portant issue to tackle is the closing of the sensorimotor loop. Especially when
talking about humanoids the tight integration of perception with actions will
allow for improved behaviours, embedding adaptation on the lower-level of
the system.

10.1 INTRODUCTION

Object manipulation in real-world settings is a very hard problem in robotics,
yet it is one of the most important skills for robots to possess [29]. Through
manipulation they are able to interact with the world and therefore become
useful and helpful to humans. Yet to produce even the simplest human-like
behaviours, a humanoid robot must be able to see, act, and react continu-
ously. Even more so for object manipulation tasks, which require precise and
coordinated movements of the arm and hand. The understanding of how hu-
mans and animals control these movements is a fundamental research topic
in cognitive- [49] and neuro-sciences [27]. Despite the interest and importance
of the topic, e.g. in rehabilitation and medicine, the issues and theories behind
how humans learn, adapt and perform reaching and grasping behaviours re-
main controversial. Although there are many experimental studies on how
humans perform these actions, the development of reaching and grasping
is still not fully understood and only very basic computational models ex-
ist [45]. Vision is seen as an important factor in the development of reach-
ing and grasping skills in humans [5, 39]. For example, imitation of simple
manipulation skills has been observed already in 14-month-old infants [40].
Current robots in contrast are only able to perform (simple) grasps in very lim-
ited, specific settings. To enable more autonomous object manipulation, more
specifically how to enable some level of eye-hand coordination to perform
actions more successfully, is of high interest to the robotics community (see
e.g. NASA’s Space Technology Roadmap calls for “Real-time self-calibrating
hand-eye System” [1]).

Artificial Intelligence, Machine Learning and Robotics

The research in the fields of Artificial Intelligence (AI) and robotics were
strongly connected in the early days, but have diverged over the last decades.
Although Al techniques were developed to play chess on a level good enough
to win against (and/or tutor) the average human player [51], the robotic
manipulation of a chess piece, in contrast, the creation of intelligent machines
has lacked quite a bit behind the algorithmic side. It is still not feasible to
control a robot on a similar level of precision, adaptation and success as
a human — not even comparative to children level. To produce even the
simplest autonomous, adaptive, human-like behaviours, a humanoid robot
must be able to, at least:
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e Identify and localize objects in the environment, e.g. the chess pieces
and board

e Execute purposeful motions for interaction, e.g. move a piece to a de-
sired position

At the beginning of Al research a clear goal was to build complete, in-
telligent, autonomous robotic system [50]. As with the example of the above
example of chess, it has proven to be quite challenging. Not helping the cause
was the fractioning of the fields into many distinct facets of research. While
there was progress in each of the sub-fields and the both disciplines (Al and
robotics) separately, it has now become clear that a closer integration is again
needed. There has been a renewed interest, from both research communities,
to work together again towards the goal of intelligent robotic systems.

The field of robotics has clearly matured over the last few years. Cur-
rent humanoid robots are stunning feats of engineering as mention above. To
embed this systems with some sense of ‘intelligence” and use the full versa-
tility of advanced robotic systems, a bigger collaboration with the research
community in Artificial Intelligence and Machine Learning is required.

The idea of the ‘embodied mind’ stems from philosophy. It claims that
the nature of the human mind is determined by the form of the human body.
Philosophers, psychologists, cognitive scientists, and artificial intelligence re-
searchers who study embodied cognition and the embodied mind argue that
all aspects of cognition are shaped by aspects of the body. The embodied
mind thesis is opposed to other theories of cognition. Embodied cognition re-
flects the argument that the motor system influences our cognition, just as the
mind influences bodily actions. Roboticists have argued that to understand
intelligence and build artificial system that comprise intelligence can only be
achieved by machines that have both sensory and motor skills. Furthermore
they need to be interacting with the world through a body. This ‘embodi-
ment’ is seen as an important condition for the development of cognitive
abilities both in humans and robots [9, 62, 48]. The insights of these robotics
researchers have in return also influenced philosophers.

Machine Learning algorithms, have been applied in experimental robotics
to acquire new skills, however the need for carefully gathered training data,
clever initialization conditions, and/or demonstrated example behaviours
limits the autonomy with which behaviours can be learned. To build robots
that can perform complex manipulation skills that help users in their activities
of daily living is the aim of various research projects in Europe (e.g. [11, 60]).

Robot Learning

As mentioned above the programming of these highly complex robot systems
is a cumbersome, difficult and time-consuming process. Current approaches
tend to describe each precise each precise movement in detail, allowing little
to no flexibility or adaptation during execution. This obviously has issues
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with scaling to highly complex robots in complicates settings. Therefore the
robotics community has focused on methods to provide robots with the ability
to act autonomously, adapt or ‘learn” how to behave without the need of hard-
coding every possible outcome.

Autonomous robots research is aimed at building systems that do not re-
quire the pre-programming of every possible situation encountered. Many
kinds of robots have some degree of autonomy and different robots can be
autonomous in different ways. In fields, such as space exploration, a high
degree of autonomy is desirable. For an autonomous robot one generally
assumes the following capabilities [14]:

e Gain information about the environment (Rule #1)
e Work for an extended period without human intervention (Rule #2)

e Move either all or part of itself throughout its operating environment
without human assistance (Rule #3)

e Avoid situations that are harmful to people, property, or itself unless
those are part of its design specifications (Rule #4)

e Maintain its own survival at the expense of the previous rules (Sentient
Robot Mandate) (Rule #5)

e Learn or gain new capabilities like adjusting strategies for accomplish-
ing its task(s) or adapting to changing surroundings (Rule #6)

In the early 90s of the last century Behavioural Robotics (or behaviour-based
robotics) was introduced as a way to deal with more and more complex robots
and application areas [8]. This research area focuses on flexible switching
mechanisms to change the robots main behaviours based only on a very
simple internal model. The basic idea is that close (and probably simple)
sensor-motor connections can result in behaviours that appear complex and
sophisticated. Due to the fact that these models used a simple approach,
rather than a computational complex model and the relatively low cost of
development, popularised this approach in the mid-1990s. This paradigm
has had a wide range of application in multi-robot teams [4] yet the scaling
to complex robots, such as humanoid, has not been successful so far.

Robot Learning generally refers to research into ways for a robot to learn
certain aspects by itself. Instead of providing all information to the robot
a priori, for example, possible motions to reach a certain target position,
the agent will through some process ‘learn” which motor commands lead
to what action. The research field is placed at the intersection of machine
learning and robotics and studies how robots can acquire new skills through
experimentation. The earlier mentioned ‘embodiment” plays an important
role here. Example include the learning of sensorimotor skills (for example
locomotion, grasping, object manipulation), as well as interactive skills such
as manipulation of an object in collaboration with a human. In addition the
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learning of linguistic skills, especially the grounding of words or phrases in
the real world, is of interest to the research community. The field of ‘robot
learning’ is closely related to other disciplines, for example, adaptive control.
Learning in realistic environments requires algorithms that can deal with
high-dimensional states, e.g. to detect events in the stream of sensory inputs,
change and uncertainty. Note that while machine learning is nowadays often
used for computer and robot vision tasks (like in this dissertation), this area of
research are usually not referred to as ‘robot learning’. The fields of Cognitive
Robotics, Developmental Robotics and Evolutionary Robotics emerged with the
specific aim to investigate how robots can ‘learn’ for themselves and thereby
generate more autonomous and adaptive capabilities.

In Cognitive Robotics [3] the aim is to provide robots with cognitive pro-
cesses, similar to humans and animals. An integrated view of the body is
taken, including the motor system, the perceptual system and the body’s
interactions with the environment. The acquisition of knowledge, may it be
through actions (e.g. motor babbling) or perception is a big part of cognitive
robotics research. Another is the development of architectures for these tasks.
A variety has been proposed [54, 58, 12, 63], but the promised improvements
in robotic applications still need to be shown. This can be attributed to the
varying definitions of cognition and the complex human cognitive system,
whose workings are still not fully understood. To build cognitive architec-
tures two distinct approaches have been tried. The research seems to mainly
focus on top-down architectures. A bottom-up approach has been described
as suitable for the use with robots (e.g. the proposed iCub cognitive architec-
ture [59]).

Developmental Robotics [3, 61, 2] is aiming to put more emphasis on the
development of skills. It is an interdisciplinary approach to developmental
science. It differs from the previous approaches, as the engineer only creates
the architecture and then allows the robot to explore and learn its own rep-
resentation of its capabilities (sensory and motor) and the environment. As
above, the body and its interactions with the environment are seen as being
fundamental for the development of skills. Aims are to build adaptive robotic
systems by exploration and autonomous learning, i.e. learning without a di-
rect intervention from a designer [37]. Here interesting areas to explore are
selected by building on previous knowledge, while seeking out novel stimuli.

Evolutionary Robotics [23, 43] is another approach to add adaptiveness and
developmental processes to robots. It emerged as a new approach to over-
come the difficulties of designing control systems for autonomous robots: (a)
coordinating the (increasing) number of DOF both in mechanics and control
is hard, especially since the complexity scales with the number of possible
interactions between parts (see ‘Curse of Dimensionality” [15]) (b) the envi-
ronment and how the robot interacts with it are often not known before. Its
main focus is on evolve a control system based on artificial neural networks.
These neuro-controllers (NC), inspired by the neuron activity in the human
brain, have been shown to work in a wide range of applications [44,17, 31]. An
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important issue is that to ‘learn” behaviours, a large number of iterations (or
generations) is required. This works fine in simulation but is hard to achieve
on a real robotic platform. [44] showed that evolving a NC on hardware is,
while time consuming, feasible, at least for simple mobile robots. Hybrid
approaches, where NCs are trained first in simulation and then transferred
to the real hardware, seem preferential. The performance of the controllers
in the real world can then be used to improve the simulation [6]. How to
effectively train and apply NCs to real, high-DOF hardware is still an open
research question.

Other Approaches to robot learning have been developed in the past. The
area of Reinforcement Learning (RL) [56] has appealed to many roboticists,
especially for learning to control complex robotic systems. A general RL algo-
rithm and the means to inform the robot whether its actions were successful
(positive reward) or not (negative reward) is all that is required. RL and its
applicability to humanoid robots has been investigated by [47]. Imitation
Learning or Apprenticeship Learning is of importance in human skill devel-
opment as it allows to transfer skills from one person to another. In robotics
Robot Learning from demonstration or Programming by Demonstration is a
similar paradigm for enabling robots to learn to perform novel tasks. It takes
the view that an appropriate robot controller can be derived from observa-
tions of a another agent’s performance thereof [53].

10.2 A COGNITIVE ROBOTICS APPROACH

One of the most important problems in robotics currently is arguably to
improve the robots’ abilities to understand and interact with the environment
around them: a robot needs to be able to perceive, detect and locate objects in
its surrounding and then then have the ability to plan and execute actions to
manipulate these objects detected.

The described approach herein was developed to extend the capabilities
of the iCub humanoid robot, especially to allow for more autonomous and
more adaptive — some would say, more ‘intelligent’ — behaviours. The iCub is
a state-of-the-art, high degree-of-freedom (DOF) humanoid (see Figure 10.1)
[57]. It consists of two arms and a head attached to a torso roughly the size
of a human child. The head and arms follow an anthropomorphic design
and provide a high DOF system that was designed to investigate human-like
object manipulation. It provides also a tool to investigate human cognitive
and sensorimotor development. To allow for safe and “intelligent” behaviours
the robot’s movements need to be coordinated closely with feedback from
its sensors. The iCub is an excellent experimental platform for cognitive,
developmental robotics and embodied artificial intelligence [42].

The aim is to generate a not before seen level of eye-hand coordination on
the iCub. Pick-and-place operations were chosen as they require intelligent
behaviour in a complex environment, i.e. perceiving which objects are in its
vicinity, reaching for a specific object, while avoiding obstacles. The cognitive
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FIGURE 10.1 The experimental platform used: the iCub humanoid
robot.

skills, from learning what an object is and how to detect it in the sensory
stream, to adapting the reach if the environment changes, are embedded
using a variety of frameworks. First functional motion and vision subsystems
are developed, which are then integrated to create a closed action-perception
loop. The vision side detects and localises the object continuously, while the
motor-side tries to reach for target objects avoiding obstacles at the same time.

A combination of robot learning approaches with computer vision and
actions is used to improve adaptivity and autonomy in robot grasping based
on visual feedback. The next section contains the description of the robot
vision frameworks and techniques developed for and implemented on the
iCub, shown in the top row of Figure 10.2 (in green). It includes the modules
for the detection and identification of objects (in the images), as well as, the
localization (in 3D Cartesian space). The bottom half, in yellow, shows the
action and motion side. To generate motion using machine learning tech-
niques a crucial feature is avoiding collisions, both between the robot and the
environment and the robot and itself.

The various modules developed and interacting in this cognitive approach
are the following;:

e Object Models, Detection and Identification: as mentioned above, the de-
tection and identification of objects is a hard problem. To perform these
tasks CGP-IP (Cartesian Genetic Programming for Image Processing)
[22] is used. It provides a machine learning approach to building vi-
sual object models, which can be converted into executable code, in
both supervised and unsupervised fashion [32]. The resulting program
performs the segmentation of the camera images for a specific object.

o Object Localisation: by using the image coordinates of the detected object
from the two cameras together with the current robot’s pose, the posi-
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FIGURE 10.2 Overview of the proposed architecture for a functional
eye-hand coordination on the iCub humanoid. The object detection and
identification is currently solely based on the camera images (2D) re-
ceived. The object localization uses the information from the two cam-
eras to calculate an operational space (3D) position. This is the same
space in which collision avoidance is applied and the world is modelled.
The object model contains the information of how to detect the object
in the 2D images (see Section 10.3). The motion generation and action
repertoire can use the full configuration space of the humanoid (41
DOF).

tion of the object can be estimated in Cartesian space wrt. the robot’s ref-
erence frame. Instead of a calibration for each single camera, the stereo
system and the kinematic chain, a module that learns to predict these
from a training set is incorporated. The system has been shown to esti-
mate these positions with a technique based on genetic programming
[35] and an artificial neural network estimators [34]. After the object is
detected in the camera images the location of an object is estimated and
the world model is updated.

e Action Repertoire: a light-weight, easy-to-use, one-shot grasping system
(LEOGrasper?), which has been used extensively at IDSIA (Figure 10.6),
provides the main grasping subsystem. It can be configured to perform
a variety of grasps, all requiring to close the fingers in a coordinated
fashion. A variety of more complex actions/roadmaps can be generated
offline and later executed on the iCub [55], to e.g. lead to improved
perception [36].

1Source code available at: https://github.com/Juxi/iCub/
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e World Model, Collision Avoidance and Motion Generation: the world model
keeps track of the robot’s pose in space and the objects it has visually
detected. Figure 10.8 shows this model including the robot’s pose the
static table, and the two objects localised from vision. MoBeE is used
to safeguard the robot from (self-)collisions. It furthermore allows to
generate motion by forcing the hand in operational space.

Section 10.4 describes the developed techniques to control the iCub. All
these subsystems are supported by memory (in blue) enabling the persistent
modelling of the world and providing a repertoire of actions to be triggered.
In Section 10.5 the tight integration of these two sides, the perception and the
motion, is described. Section 10.6 presents a proof-of-concept, highlighting a
level of eye-hand coordination not previously seen on the iCub.

10.3 PERCEIVING THE ENVIRONMENT

To be useful in the above proposed scenarios a robot must be able to see, act,
and react continuously. Perception is a key requirement in order to purpose-
fully adapt robot motion to the environment, allowing for more successful,
more autonomous interactions. The first important step towards this is to
understand the environment the robot is embedded in. Coming back to the
example of playing chess, this would compare to finding the chess board and
each of the chess pieces (e.g. in a camera image) or even just to to realise that
there is a chess board and pieces in the scene.

Vision and the visual system are the focus of much research in psychol-
ogy, cognitive science, neuroscience and biology. A major problem in visual
perception is that what individuals ‘see’ is not just a simple translation of
input stimuli (compare optical illusions). One important area of research to
build robots that can understand their surroundings is the development of
artificial vision. Computer Vision — sometimes referred to as Robot Vision when
applied in a robotic system — generally describes the field of research dealing
with acquiring, processing, analysing, and understanding images in order to
produce decisions based on the observation. The fields of computer vision
and Al have close ties, e.g. autonomous planning or decision making for
robots requires information about the environment, which could be provided
by a computer vision system. Al and computer vision share other topics such
as pattern recognition and learning techniques.

Even though no clear definition of the areas of computer vision and im-
age processing exists, the latter is commonly used to refer to a subsection
of computer vision. Image processing techniques generally provide ways of
extracting information from the image data, for example, noise reduction, fea-
ture extraction, segmentation, etc.[21] Another important topic in computer
vision is ‘image understanding’. With the aid of geometry, statistics, and
learning the goal is to mimic the abilities of the human (visual) perception
system.

Research into vision for the special requirements of robotic systems is
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referred to as robot vision or machine vision [24, 25]. For example, visual feed-
back has extensively been used in mobile robot applications, for obstacle
avoidance, mapping and localization. With the advancement of humanoids
and the increased interest in working around humans, object detection and
manipulation are more and more driving the development of robot vision
systems. An important problem is that of determining whether or not the im-
age data contains some specific object, feature, or activity. While this has been
researched for quite some time already, the task seems harder than expected
and no solution for the general case of detecting arbitrary objects in arbitrary
situations exists. From a robot vision point of view, this means that the robot
is required to detect previously unknown objects in its surroundings and be
able to build models to memorise and identify them in the future. Most of
the work is heavily relying on artificial landmarks and fiducial markers to
simplify the detection problem. Furthermore existing methods can at best
solve it for specific objects (simple geometries, faces, printed or hand-written
characters, or vehicles) and in specific situations (in terms of well-defined
illumination, background, and pose of the object wrt. the camera). For a de-
tailed introduction and overview of the foundations and the current trends
the reader is referred to the excellent survey by [30].

10.3.1 Object Detection: icVision & CGP-IP

Aiming at eye-hand coordination and object manipulation the following
frameworks were implemented to enable the learning and real-time oper-
ation of object detection and identification.

icVision [33] is an open-source?, biologically-inspired framework consist-
ing of distributed YARP [41] modules performing computer vision related
tasks in support of cognitive robotics research (Figure 10.3). It includes the
modules for the detection and identification of objects (in the camera im-
ages, referred to as Filters), as well as the localisation of the objects in the
robot’s operational space (3D Cartesian space). At the centre is the icVision
core module, which handles the connection with the hardware and provides
housekeeping functionality (e.g., extra information about the modules started
and methods to stop them). Currently available modules include object de-
tection, 3D localisation, gazing control (attention mechanism) and saliency
maps. Standardised interfaces allow for easy swapping and reuse of modules.

The main part in object detection, the binary segmentation of the object
from the background (see Figure 10.3 on the right), in the visual space, is
performed in separate icVision filter modules. Each one is trained using the
Cartesian Genetic Programming for Image Processing (CGP-IP) framework
[22], in combination with the OpenCV [7] library, to detect and identify spe-
cific objects in a variety of real-life situations (e.g. a tea box as shown in
Figure 10.4). The framework can run multiple filter modules in parallel. A

2Code available at: https://github.com/Juxi/icVision/
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FIGURE 10.3 The icVision Architecture: The core module (bottom) is
mainly for housekeeping and accessing & distributing the robot’s cam-
era images and motor positions. Object detection is performed in the
filter modules (top), by segmenting the object of interest from the back-
ground. A typical work flow is shown (right): input images are re-
trieved from the cameras, the specific object is detected by a trained
Filter Module, before the outputs (together with the robot’s current
pose) are used to estimate a 3D position using a localisation module.
The object is then placed in the world model.

variety of filters have been learnt and most of them are able to perform the
object detection in near real-time.

To interact with the objects the robot also needs to know where the ob-
ject is located. Developing an approach to perform robust localisation to be
deployed on a real humanoid robot is necessary to provide the necessary in-
puts for on-line motion planning, reaching, and object manipulation. icVision
provides modules to estimate the 3D position based on the robot’s pose and
the location of object in the camera images.

10.4 INTERACTING WITH THE ENVIRONMENT

Computer vision has become a more and more prominent topic of research
over the past decades, also in the field of robotics. Like humans and animals,
robots are able to interact with the world around them. While most robot
vision research tends focus on understanding the world from just passive
observations, these interactions with the environment provide and create
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valuable information to build better visual systems. Connecting manipula-
tion commands with visual inputs allows for a robot to create methods to
actively explore its surroundings. These connections between motor actions
and observations exist in the human brain and are an important aspect of
human development [5].

Only after the scene is observed and the robot has an idea about which
objects are in the environment, can it start interacting with these in a safe
fashion. In the chess example, even if the state of the board and where it is
located are known, to move a certain chess piece from one field to another
without toppling other pieces is still a hard problem by itself. In fact, children
even at a very young age, have significantly better (smoother, more ‘nat-
ural’, ‘fluent” and controlled) hand movements than all currently available
humanoid robots. But manipulating arbitrary objects is not a trivial thing,
even for humans. The development of hand control in children, for an ap-
parently simple, prototypical precision grasp task is not matured until the
age of 8-10 years [18]. Moreover, complexity, as can be seen by the number
of neurons comprising the control of the arm and hand, is staggeringly high.
Even after manipulation skills have been learnt they are constantly adapted
by an perception-action loop to yield desired results. In infants various spe-
cializations in the visual pathways may develop for extracting and encoding
information relevant for visual cognition, as well as, information about the lo-

FIGURE 10.4 Detection of complex objects, e.g. a tea box, in changing
poses, different light and when partially occluded is a hard problem
in robot vision.
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cation and graspability of objects [28]. This hints at the very close integration
of vision and action in the human brain.

In recent years good progress was made with robotic grasping of objects.
The various manipulators, mainly hands and grippers, and techniques clearly
improved. Also novel concepts of ‘grippers’ have been designed and some
are quite ingenious solutions to a number of issues. One such example is
the granular gripper made by [10], which is made out of grounded coffee
beans which are able to ‘flow” around the object and then fixed in position
by creating a vacuum. This concept has recently been extended to a full sized
elephant-trunk-style arm [13]. Also in terms of how to grasp objects with
regular grippers and ‘hands’ recent results highlight the advanced state of
research in grasping. For example, [38], with their research showed that robots
are able to pick up non-rigid objects, such as, towels. Their robot is able to
reliably and robustly pick up a randomly dropped towel from a table by going
through a sequence of vision-based re-grasps and manipulations-partially in
the air, partially on the table. On the other hand, ways for a robot to learn from
only a small number of real world examples, where good grasping points are
on a wide variety of previously unknown objects have been presented [52].

The progress on performing grasping operations in the last years shows
that one can now use these grasping subroutines and further integrate them
in autonomous systems. The direct interface between various components,
which makes robotics such a hard but interesting field, clearly needs to im-
prove to allow for robust object manipulation. Only by combining sensing
and control of the whole robotic platform a fully functional “pick-and-place’
capable system will appear. To allow for a variety of objects to be picked up
from various positions the robot needs to see, act and react within a control
system in which these elements are tightly integrated.

10.4.1 Collision Avoidance and World Model: MoBeE

An important issue is to ensure the safe operation of our humanoid. Modular
Behavioral Environment (MoBeE) [19] is a software infrastructure to realise
complex, autonomous, adaptive and foremost safe robot behaviours. It acts as
an intermediary between three loosely coupled types of modules: the Sensor,
the Agent and the Controller. These correspond to abstract solutions to prob-
lems in Computer Vision, Motion Planning, and Feedback Control, respec-
tively. An overview of the system is depicted in Figure 10.5. The framework is
robot independent, and can exploit any device that controlled via YARP [41].
It also supports multiple interacting robots, and behavioural components are
portable and reusable thanks to their weak coupling. MoBeE controls the
robot constantly, according to the following second order dynamical system:

Mi(H) + Ci(t) + K = ) = ), filh (1)

where g(t) € R" is the vector function representing the robot’s configura-
tion, M, C, K are matrices containing mass, damping and spring constants
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FIGURE 10.5 The Modular Behavioral Environment Architecture:
MoBeE implements low-level control and enforces necessary con-
straints to keep the robot safe and operational in real-time. Agents (left)
are able to send high-level commands, while a kinematic model (top)
is driven by the stream of encoder positions (right). The model com-
putes fictitious constraint forces, which repel the robot from collisions,
joint limits, and other infeasibilities. These forces, fi(t), are passed to
the controller (middle), which computes the attractor dynamics that
governs the actual movement of the robot.

respectively. g* denotes an attractor (resting pose) in configuration space.
Constraints on the system are implemented by forcing the system via f;(t),
providing automatic avoidance of kinematic infeasibilites arising from joint
limits, cable lengths, and collisions.

An agent can interact with MoBeE, instead of directly with the robot, by
sending arbitrary high-level control commands. For example, when a new
attractor g* is set to a desired pose by an agent, e.g. by calculating the inverse
kinematics of an operational space point, 4(f) begins to move toward q*. The
action then terminates either when the dynamical system settles or when a
timeout occurs, depending on the constraint forces f;() encountered during
the transient response.

10.4.2 Action Repertoire: TRM & LEOGrasper

The action repertoire for the scenario herein consists mainly of a grasping
subsystem and a framework to generate full-body motions. LEOGrasper is a
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light-weight, easy-to-use, one-shot grasping system (Figure 10.6).%), It can be
configured to perform a variety of grasps, all requiring to close the fingers in
a coordinated fashion. The iCub incorporates touch sensors on the fingertips,
due to the high noise, we use the error reported by the PID controllers of the
finger motors to know when they are in contact with the object. A variety of
more complex actions/roadmaps can be generated offline and later executed
on the iCub [55], to e.g. lead to improved perception [36].

To generate a set of more-complex actions to execute MoBeE’s kinematic
model was extracted and connected with a machine-learning based, black-
box optimizer. The system aims to find find a robot pose g, € C, where C
describes the robot’s configuration space, that satisfies some operational space
constraints, with planning, i.e. find a feasible configuration-space trajectory,
Q c C, which is the curve from the current pose, ginitis and the target pose
G qoal-

! Natural Evolution Strategies (NES) are applies to find a set of task-related
poses yielding Task-relevant Road Map (TRM) [55]. It finds a family of pos-
tures that are optimized under constraints defined by arbitrary cost-functions,
and at the same time maximally covers a user-defined task-space. Connect-
ing these postures creates a rather dense, traversable graph, which we call
roadmaps. In other words, the task-relevant constraints are built directly into
the TRM, and motion planning is reduced to graph search. This allows to
build TRMs that can perform useful tasks in the 41-dimensional configura-
tion space of the upper body of the iCub humanoid. Additionally these maps
can be stored to create an action repertoire that can be recalled when a certain
tasks needs to be executed. Figure 10.7 shows time-lapse snapshots of mo-
tions, planned within TRMs. It provides an idea of what kind of motions can
be generated.

3Source code available at: https://github.com/Juxi/iCub/

FIGURE 10.6 Grasping a variety of objects successfully, such as, tin
cans, plastic cups and tea boxes. The module works for both the right
and left hand.



206 m Cognitive Robotics

10.5 INTEGRATION

To allow for a variety of objects to be picked up from various positions the
robot needs to see, act and react within an integrated control system.

For example, methods enabling a 5 DOF robotic arm to pick up objects
using a point-cloud generated model of the world and objects are available
to calculate reach and grasp behaviours [52]. In 2010 a technique for robots to
pick up non-rigid objects, such as, towels was presented [38]. It allows to re-
liably and robustly pick up a towel from a table by going through a sequence
of vision-based re-grasps and manipulations-partially in the air, partially on
the table. Even when sufficient manipulation skills are available these need
to be constantly adapted by an perception-action loop to yield desired re-
sults. ‘Robotics, Vision and Control’ [16] puts this close integration of the
mentioned components into the spotlight and describes common pitfalls and
issues when trying to build such systems with high levels of sensorimotor
integration. In the DARPA ARM project, which aims to create highly au-
tonomous manipulators capable of serving multiple purposes across a wide
variety of applications, the winning team showed an end-to-end system that
allows the robot to grasp and pick-up diverse objects (e.g. a power drill, keys,
screwdrivers, etc.) from a table by combining touch and LASER sensing [26].

10.5.1 Closing the Action-Perception Loop

The aim is to generate a pick-and-place operation for the iCub. For this, func-
tional motion and vision subsystems are integrated to create a closed action-
perception loop. The vision side detects and localises the object continuously,
while the motor-side tries to reach for target objects avoiding obstacles at
the same time. A grasping of the object is triggered when the hand is near
the target. The sensory and motor sides establish quite a few capabilities by
themselves, yet to grasp objects successfully while avoiding obstacles they

FIGURE 10.7 ‘Curiously inspect something small”: the 3D position of
the hand is constrained, and the task space is its angle with respect
to the gaze direction. The resulting map rotates the hand (and any
grasped object) in front of the eyes.
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need to work closely together. The continuous tracking of obstacles and the
target object is required to create a reactive reaching behaviour which adapts
in real-time to the changes of the environment.

By creating interfaces between MoBeE and icVision the robot is able to
continuously perform a visual based localisation of the detected objects and
propagated this information into the world model. This basic eye-hand coor-
dination allows for an adaptation while executing the reaching behaviour to
changing circumstances, improving our robot’s autonomy.

10.6  RESULTS

The first experiment shows that the herein presented system is able to reac-
tively move the arm out of harms way when the environment changes. Then
it is shown how this system can be used to reactively reach and grasp objects.

10.6.1  Avoiding a Moving Obstacle

Static objects in the environment can be added directly into MoBeE’s world
model. Once, e.g. the table, is in the model, actions and behaviours are adapted
due to computed constraint forces. These forces, fi(t) in (1), which repel the
robot from collisions with the table, governs the actual movement of the
robot. This way we are able to send arbitrary motions to our system, while
ensuring the safety of our robot (this has recently been shown to provide a
good reinforcement signal for learning robot reaching behaviours [46, 20]).
The presented system has the same functionality also for arbitrary, non-static
objects. After detection in both cameras the object’s location is estimated
(icVision) and propagated to MoBeE. The fictional forces are calculated to
avoid impeding collisions. Figure 10.8 shows how the localised object is in
the way of the arm and the hand.* To ensure the safety of the rather fragile
fingers, a sphere around the end-effector can be seen. It is red, indicating a
possible collision, because the sphere intersects with the object. The same
is valid for the lower arm. The forces, calculated at each body part using
Jacobians, push the intersecting geometries away from each other, leading to
a forcing of the hand (and arm) away from the obstacle. Figure 10.9 shows
how the the robot’s arm is avoiding a non-stationary obstacle.” The arm is
‘pushed’ aside at the beginning, when the cup is moved close to the arm.
It does so until the arm reaches its limit, then the forces cumulate and the
end-effector is ‘forced” upwards to continue avoiding the obstacle. Without
an obstacle the arm starts to settle back into its resting pose g*.

4See video: https://www.youtube.com/watch?v=w_gDH5tSe7g
5See video: https://www.youtube.com/watch?v=w_gDH5tSe7g
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10.6.2 Reaching and Grasping Objects

This next experiment is on a simple reactive pick-and-place routine for the
iCub. Similarly to the above experiment we are using MoBeE to adapt the
reaching behaviour while the object is moved. To do this we change the type
of the object within the world model from ‘obstacle” into ‘target’. Due to this
change there is no repelling force calculated between the object and the robot
parts. In fact we can now use the vector from the end-effector to the target
object as a force that drives the hand towards a good grasping position.

FIGURE 10.8 Showing the visual output of the MoBeE world model
during one of our experiments. Parts in red indicate (an impeding)
collision with the environment (or itself). The inset shows the actual
scene.

Fe—

FIGURE 10.9 The reactive control of the left arm, permitting the iCub
to stay clear of the non-static “obstacle’, as well as the table.
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MoBeE also allows to trigger certain responses when collisions occur. In
the case, when we want the robot to pick-up the object, we can active a grasp
subsystem whenever the hand is in the close vicinity of the object. We are
using a prototypical power grasp style hand-closing action, which has been
used successfully in various demos and videos.® Figure 10.6 shows the iCub
successfully picking up (by adding an extra upwards force) various objects
using our grasping subsystem, executing the same action.

Our robot frameworks are able to track multiple objects at the same time,
which is also visible in Figure 10.8, where it tracks both the cup and the tea
box. By simply changing the type of the object within MoBeE the robot reaches
for a certain object while avoiding the other.

10.7 CONCLUSIONS

Herein a cognitive robotics approach towards visual guided object manip-
ulation with a humanoid was presented. A tightly integrated sensorimotor
system, based on two frameworks developed over the past years, enables the
robot to perform a simple pick-and-place task. The robot reaches to detected
objects, placed at random positions on a table.

The implementation enables the robot to adapt to changes in the environ-
ment. Through this it safeguards the iCub from unwanted interactions —i.e.
collisions. This is facilitated by a tight integration of the visual system with
the motor side. Specifically an attractor dynamic based on the robot’s pose
and a model of the world. This way a level of eye-hand coordination not
previously seen on the iCub was achieved.

In the future more integration of machine learning to further improve
the object manipulation skills of our robotic system is planned. Improving
the predication and selection of actions will lead to a more adaptive, versatile
robot. Furthermore it might be of interest to investigate an even tighter senso-
rimotor coupling, e.g. avoiding translation into operational space by working
in vision/configuration space.
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