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I. INTRODUCTION

Robotic grasping is a widely studied topic, and many
different approaches exist [1], [2]. However, many of these
approaches rely on having accurate position information for
the target object, which is not always feasible in real-world
scenarios. This is especially true for unstructured warehouse
picking, which presents many perception challenges such
as occlusion, clutter and the inability of visual sensors to
accurately perceive certain types of objects. While there are
pose estimation strategies based on model fitting [3] and
shape completion [4], these are not robust to major occlusion
or a complete absence of accurate visual information.

To address these real-world issues, we have developed
a grasp detection system which uses a hierarchy of three
different strategies to operate successfully under varying
levels of visual uncertainty. The system was used as part
of our winning entry to the Amazon Robotics Challenge
(ARC) [5].

II. CUSTOM MULTI-MODAL END-EFFECTOR

The ARC requires robots to autonomously pick a diverse
set of items – including rigid, semi-rigid, hinged, deformable
and porous objects – from heavily cluttered storage systems,
a task that is challenging not only with regards to perception
but also in terms of manipulation. For this purpose we
designed a multi-modal end-effector to complement our
grasp detection system (Fig. 1). To be able to manipulate
the largest possible set of items, our end-effector comprises
a suction gripper and parallel-plate gripper. The two tools are
selectable using a 180-degree tool change mechanism which
supports 6-DOF pose control for each tool.

The dual-ended design allows a no-compromise approach
to the design of each tool as they do not physically share
design space, in contrast to a multi-modal end-effector that
combines multiple grasping modalities at the same end-
point. Our system makes effective use of redundant design in
an attempt to maximise grasping performance. We achieve
this by designing the two tools to be complementary, first
determining which subset of items could be reliably acquired
by suction and targeting the design of the parallel plate
gripper at the remaining item classes (mainly those which
are small, deformable or porous).

A more in-depth analysis of the design of our end-effector
is provided in [6].
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III. HIERARCHICAL GRASP DETECTION

Our grasp detection system uses a hierarchy of three differ-
ent grasp detection strategies, each of which is able to work
with progressively less visual information at the expense of
precision in the grasp point detection. The most appropriate
grasp detection strategy is chosen to make best use of the
available visual information (Fig. 2). The system relies on
an external object detection and segmentation system [5].

The system addresses two main challenges of cluttered
item picking. Firstly, it is able to deal with occlusion by
considering only the visible portions of objects for grasping,
avoiding any challenges associated with pose estimation or
model fitting by relying on visual information only. Sec-
ondly, the material characteristics of some items introduce
perceptual challenges. Items which are textureless, reflective,
transparent or black are difficult or impossible for many
modern depth cameras to accurately perceive, in which case
visual information may not be accurate even if the object is
not occluded.

Many objects which have regular, matte surfaces can be
accurately perceived by an RGB-D camera. In this case,
our system utilises its most accurate approach (Fig. 2a).
This approach computes surface normals in a grid across
the segmented point cloud of the object, and uses a set
of heuristics to rank the grasp quality of each, similar to
[7]. Grasps are ranked based on their distance to edges and
boundaries, angle to vertical and height relative to nearby
objects. To produce a spatially diverse set of grasps, similarly
ranked grasps in close proximity to one another are removed.
This approach is most suited to the suction gripper, as objects
that fulfil these criteria often have suitable suction attachment

Fig. 1. End-effector Assembly. (A) Rotating suction cup (B) Suction
gripper pitch servo (drive belt not pictured) (C) wrist-mounted RealSense
camera (D) suction hose attachment (E) Roll motor (F) Yaw (tool-change)
motor (G) Gripper pitch motor (H) Gripper servo (I) Parallel plate gripper
[5]
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Fig. 2. Grasp detection under varying visual quality. Grasps are represented as vectors opposite to the direction of approach, with grasp rankings shown
by colour (red to green = low to high) and length (longer is better). (a) Grasp ranking on the tissue box are chosen heuristically, (b) The incomplete point
cloud of the metallic bowl does not produce any quality grasps, so the point cloud centroid is used, and (c) the plastic wine glass gives no valid depth data
so the RGB segment is used to estimate its position in 3D space. (d) estimation of the cling wrap pose based on the RGB segment’s principal component.

points.
Objects which are reflective or partially transparent often

result in scattered point clouds. However, generally, many
of the scattered points can be removed through a filtering
process such as statistical outlier removal, resulting in an
incomplete point cloud that can still be used to estimate the
object’s position (Fig. 2b). The above grasp ranking approach
can be used on such a point cloud, but results in only lowly-
rated grasp candidates. In this case, our system falls back to
using the centroid of the filtered point cloud with a vertical
orientation as a grasp point, which is applicable to both
suction and gripping grasps.

Transparent and black objects rarely produce any valid
depth information. In this case, where the above methods
can’t be applied, our system uses the known camera pa-
rameters to estimate the position of the object in 3D space
using the centre-of-mass of the RGB segment (Fig. 2c). To
counteract any uncertainty in the depth estimation, other
sensors such as weight or pressure are used to detect contact.

To facilitate anti-podal gripping of objects, our system
requires an estimate of the object’s pose. As our system is
designed to work in the presence of severe occlusions and
incomplete visual information, it does not perform any model
fitting. Instead, the grasp pose is aligned to the principal

component of the object’s RGB segment (Fig.2(d)).
In long term testing, our robotic vision and grasping sys-

tem is able to pick a wide range of perceptually challenging
objects in dense clutter with a 72% success rate using this
hierarchical grasp detection system [5].
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