
Learning a visuomotor controller for real world
robotic grasping using simulated depth images

Ulrich Viereck, Andreas ten Pas, Robert Platt
College of Computer and Information Science

Northeastern University

Kate Saenko
Department of Computer Science

Boston University

Abstract—We want to build robots that are useful in un-
structured real world applications, such as doing work in the
household. Grasping in particular is an important skill in this
domain, yet it remains a challenge. One of the key hurdles is
handling unexpected changes or motion in the objects being
grasped and kinematic noise or other errors in the robot. This
paper proposes an approach to learning a closed-loop controller
for robotic grasping that dynamically guides the gripper to the
object. We use a wrist-mounted sensor to acquire depth images
in front of the gripper and train a convolutional neural network
to learn a distance function to true grasps for grasp configura-
tions over an image. The training sensor data is generated in
simulation, a major advantage over previous work that uses real
robot experience, which is costly to obtain. Despite being trained
in simulation, our approach works well on real noisy sensor
images. We compare our controller in simulated and real robot
experiments to a strong baseline for grasp pose detection, and find
that our approach significantly outperforms the baseline in the
presence of kinematic noise, perceptual errors and disturbances
of the object during grasping.

I. INTRODUCTION

Recently, deep neural networks have been used to learn a
variety of visuomotor skills for robotic manipulation including
grasping, screwing a top on a bottle, mating a mega-block,
and hanging a loop of rope on a hook [1]. Grasping is a
particularly useful and ubiquitous robotics task. A number of
researchers have recently proposed using deep learning for
robotic grasping systems that perform well for novel objects
presented in dense clutter [2, 3, 4]. However, these systems still
do not perform as well as we would like, achieving maximum
grasp success rates of approximately 85% to 93% in ideal
conditions [2]. The question is how to learn robotic grasping
or manipulation behaviors that are robust to perceptual noise
and kinematic inaccuracies in realistic conditions.

A major problem with many existing approaches is that
they perform one-shot grasp detection and thus cannot learn
dynamic correcting behaviors that respond to changes in the
environment. One promising solution is to learn a closed-loop
visuomotor controller. In contrast to one-shot grasp detection,
closed-loop controllers have the potential to react to the
unexpected disturbances of the object during grasping that
often cause grasps to fail. The recent work by Levine et al. [5]
used supervised deep networks to learn a closed-loop control
policy for grasping novel objects in clutter. However, their
approach has two important drawbacks. First, it requires visual
data that observes the scene from a specific viewpoint with

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Our controller makes dynamic corrections while grasping using depth
image feedback from a sensor mounted to the robot’s wrist. (a) The hand has
moved to the initial detected grasping position for the flashlight. (b) shows the
corresponding depth image. The green lines show initial grasp configurations
predicted by the CNN. The red line shows the current gripper pose. (c) and
(d): The flashlight has shifted and the hand became misaligned with the object.
(e) and (f): The controller has corrected for the misalignment and has moved
the hand into a good grasp pose. The controller is now ready to pick up the
flashlight.



Fig. 2. Overview of our approach. The training data is generated in an OpenRAVE simulator (III-B). A CNN model is trained to predict cost-to-go for grasp
poses (III-A). A controller moves the gripper to predicted good grasp poses (III-C).

respect to the robot and the scene. The consequence of this is
that it is difficult to adapt the learned controller to a different
grasping scene, e.g., a different table height or orientation
relative to the robot. Second, their approach requires two
months of real world training experience. In many scenarios,
it is simply not practical to obtain such a large quantity of
robotic training data.

This paper proposes an approach to closed-loop control for
robotic manipulation that is not subject to either of the two
limitations described above. We make three key contributions.
First, in order to eliminate the dependence on a particular
viewing direction, we mount a depth sensor near the robot
end-effector as shown in Figure 1. In this configuration, the
same visuomotor controller can be used to grasp objects from
any direction, because the camera to gripper configuration is
fixed. Second, we train the system completely in simulation,
thereby eliminating the dependence on enormous amounts of
real-world robotic training experience. The key to training
in simulation is our use of depth sensors rather than RGB
cameras. While depth data is potentially less informative than
RGB data, it can be simulated relatively accurately using
ray tracing (we use OpenRAVE [6]). Third, we propose a
novel neural network model that learns a distance-to-nearest-
grasp function used by our controller. Our convolutional neural
network (CNN) is similar in structure to that of Levine
et al. [5], but takes images at a lower resolution and has
many fewer layers. Instead of learning a policy directly, we
learn a distance function, i.e., distance to grasp, using CNN
regression with an L1 loss function. This function provides
direct feedback about how viable a grasp is and allows us to
use a simple controller to move the robot arm. We evaluate
the performance of the system both in simulation and on a
UR5 robot in our lab. Our major finding is that in the absence
of motor or sensor noise, our closed-loop grasp controller has
similar performance to a previously developed grasp detection
method [2] with very high grasp success rates. However, under
realistic motor, kinematic and sensor errors, the controller

proposed here outperforms that method significantly.

II. RELATED WORK

Recent work in grasp perception has utilized deep learning
to localize grasp configurations in a way that is analogous to
object detection in computer vision [3, 7, 8, 4]. Such methods
take potentially noisy sensor data as input and produce viable
grasp pose estimates as output. However, these grasp detection
methods typically suffer from perceptual errors and inaccurate
robot kinematics such as in our previous work [2].

Visual servoing methods use visual feedback to move a
camera to a target pose that depends directly on the object
pose. While there are numerous methods in this area [9],
only a small amount of previous work addresses using visual
feedback directly for grasping [10, 11, 12]. In contrast to
our work, the existing methods require manual feature design
or specification. An active vision approach by Arruda et al.
acquires sensor data from different view points to optimize
surface reconstruction for reliable grasping during grasp plan-
ning [13]. However, the actual grasping does not use sensor
feedback.

Levine et al. were one of the first to incorporate deep learn-
ing for grasp perception using visual feedback [5]. However,
their approach requires months of training on multiple physical
robots. Moreover, they require a CNN with 17 layers that must
be trained from scratch. In addition, their use of a static camera
makes it difficult to adapt to different grasping scenarios,
e.g., a different table height or a different grasp approach
direction. Because we generate training data in simulation and
our CNN has only a few layers, our approach is simpler. In
addition, since we mount the camera to the wrist of the robot
arm, our approach is more flexible because it can be applied
to any grasping scenario – not just those with a particular
configuration relative to the camera.

III. APPROACH

We propose a new approach to the problem of learning
a visuomotor controller for robotic grasping inspired by the



Fig. 3. Calculating the distance-to-nearest-grasp for two different offset poses
(shown in red and blue). During creation of the training set, we estimate the
distance between each of these pose offsets and the nearest ground truth grasp
(shown in green).

method of Levine et al. [5]. We mount a depth sensor near the
wrist of our robot as shown in Figure 1. On each control step,
the system takes a depth image of the scene directly in front of
the gripper and uses this sensor information to guide the hand.
The controller converges to good grasp configurations from
which the gripper fingers can close and pick up the object.
The approach is based on a convolutional neural network
that learns a distance function. It takes the depth image in
conjunction with a candidate hand displacement as input and
produces as output an estimate of the distance-to-nearest-
grasp. Figure 2 shows an overview of the approach. The key
elements are: 1) the convolutional neural network that is used
to model the distance function (Section III-A); 2) the approach
to generating the training set in simulation (Section III-B); 3)
the implementation of the controller (Section III-C).

A. CNN Model

The core of our work is a convolutional neural network
(a CNN, see Figure 2) that learns a distance function that is
used by our grasp controller. The network takes as input a
depth image, I, and an action, a = (x;y;q) 2 R2 � S1. The
action denotes a candidate planar pose offset relative to the
depth sensor to which the robotic hand could be moved. It
learns a real-valued function, d(I;a) 2R>0, that describes the
distance between the hand and the nearest viable grasp after
displacing the hand by a. We interpret this distance to be the
remaining cost-to-go of moving to the nearest viable grasp
after executing action a. Distance is measured in meters in
the (x;y;q) pose space by weighting the angular component
(by 0.001 meter/degree) relative to the translational parts.

Our CNN is based on the LeNet network designed for
handwritten digit classification [14]. It consists of two con-
volutional layers (Conv1 with 20 and Conv2 with 50 filters,
kernel size 5, and stride 1) with leaky RELUs, max pooling
and 2 inner-product (IP) layers with leaky RELUs. Inspired
by Levine et al. [5] we apply an IP layer to the input pose
vector (action) and then tile the resulting output over the spatial
dimensions to match the dimensions of the Pool1 layer and
sum element-wise. The output layer predicts the distance-to-go
for the grasp pose action. Since we are learning a real-valued
distance function, our CNN is solving a regression problem.
We use L1 loss function.

B. Generating training data

We create a dataset in simulation using OpenRAVE [6] com-
prised of image-offset pairs and the corresponding distance-
to-nearest-grasp labels. The way that OpenRAVE simulates
the depth images is of particular interest. If the simulated
images are sufficiently different from the images generated
by an actual depth sensor, then this would produce a gap that
would make it difficult to transfer the learned model onto the
real robot. Fortunately, we found that this was not the case.
The model learned on depth images generated by OpenRAVE
(using ray tracing) seems to transfer well V.

In order to train the CNN, we generate a large number
of image-action pairs, each associated with a distance-to-
nearest-grasp label. We accomplish this using OpenRAVE
as follows. First, we generate 12.5k different scenes with a
random selection of multiple objects placed under the sensor.
The objects were derived from CAD models contained within
the 3DNet database [15]. In particular, we have selected 381
graspable objects from the following 10 categories: mug,
hammer, bottle, tetra pak, flash light, camera, can, apple and
toy car. There are between 1-5 CAD objects in each scene.
Each object is placed with a random position and orientation.
Figure 3 shows a depth image with a cup, apple and camera.

For each scene we generate 40 depth images by placing the
camera randomly in (x;y;z;q ) above the objects, where x;y are
the directions parallel to the table and z is the direction towards
the table. This results in a total of 500k depth images. Each
depth image has one color channel and has a size of 64�64
pixels. For each depth image we uniformly sample 10 offset
poses within the camera view and calculate the distance to
the nearest grasp for each pose as follows. First, using the
mesh model of the scene, we sample a large number of grasp
candidates by filtering for robotic hand poses that are collision
free and that contain parts of the visible environment between
the robotic fingers (see [16]). Then, we test each candidate
for force closure using standard methods [17]. Finally, after
pruning the non-grasps, we evaluate the Euclidean distance to
the nearest sampled grasp (see Figure 3).

C. Controller

Our controller takes actions that descend the distance func-
tion that is modelled by the CNN described in Section III-A.
Its basic operation is outlined in Algorithm 1. The controller
starts with the hand at a fixed initial height above the table
in the z-direction. In Step 3, the controller acquires an image
from the wrist-mounted depth sensor. In Step 4, it samples a
set of candidate actions and selects the one with the minimum
distance-to-nearest-grasp. In Step 5, the controller moves by
a constant fractional step size in the direction of the selected
action. In Step 6, the controller approaches the object in the z-
direction by one step. This process repeats until the controller
converges and the hand reaches the final hand height.

An important point is that we constrain the sampling to
a region around the origin in the image. This enables us to
capture the gradient of the distance function in the neighbor-
hood of the current hand pose. The distance function may be



a multimodal function in the space of offsets. For purposes of
stability, it is important for the controller to follow a gradient.
This is illustrated in Figure 4. Although the global minimum
in the distance function is on the left, the hand will follow
the gradient to the right. The controller thus grasps the object
closest to the current hand pose, regardless of its identity. If our
goal was to grasp a desired target object, our approach could
be extended to first run object detection and then sample grasp
candidates near the target object, e.g., within a bounding box
around it.

Fig. 4. Illustration for how the controller works in a 1-dimensional case with
two objects (control in x-axis direction). Although the global best prediction
for the grasp pose belongs to the object on the left, the controller moves to
the closer object on the right, because it follows the direction of the local
gradient near the center of the image.

IV. SIMULATION EXPERIMENTS

We perform a series of experiments in simulation to evaluate
our new grasp controller (CTR) relative to grasp pose detection
(GPD), a recently proposed one-shot method that also learns
in simulation and achieves high success rates [2]. We perform
this comparison for two scenarios: one where the manipulator
moves exactly as commanded and one where the desired
manipulator motions are corrupted by zero-mean Gaussian
noise. All of the following simulation data are averages over
400 trials. In each trial, we generate a scene in OpenRAVE
with a random selection and placement of objects from the test
set as described in Section III-B. The initial camera position
is set to 0.3 m above the table. At each iteration the camera
height is reduced by a constant step until height 0.15 m is
reached. We run the controller for a total of 75 iterations,

using r = 0:2 as the step ratio to a target pose, and plot the
distance of the final gripper pose to the closest true grasp.

We use the deep learning framework Caffe [18] for training
the network. We run 900k iterations of stochastic gradient
descent with a learning rate of 0.001, a momentum of 0.9,
and a batch size of 1k instances. The dataset is described in
Section III-B. We split the training and test sets on object
instances. Both the training and test sets contain all 10 object
categories. However, the same object instance does not appear
in both sets. The training set contained 331 object instances
and the test set contained 50. We use the same network for all
experiments, including experiments on the robot in Section V.

A. Comparison with GPD baseline in the presence of kine-
matic noise

We compare the following scenarios: 1) INIT : No cam-
era motion, distances measured from the initial position;
2) CTRno noise: Run CTR starting from the initial position,
without kinematics noise; 3) CTRwith noise: Run CTR from
the initial position, with kinematics noise; 4) GPDno noise:
Move to top GPD prediction, without kinematics noise; 5)
GPDwith noise: Move to top GPD prediction, with kinemat-
ics noise. The “with noise” scenario, simulates the situation
where zero mean Gaussian noise (w �N (0;1)) is added to
the robotic hand displacements on each control step:

∆(x;y;q)noisy = ∆(x;y;q)+ 0:4wk∆(x;y;q)k (1)

While this noisy-motion scenario is not entirely realistic ,
we nevertheless think this is a good test of the resilience
of our controller to kinematic errors. The final distances to

Fig. 5. Histogram for distances of grasps to closest true grasp for 400 sim-
ulated trials for various scenarios. This shows that our approach compensates
well for movement noise of the gripper, where a GPD baseline method fails
to compensate.

the closest true grasp for the 5 scenarios above is shown in
Figure 5. Note that we only consider the distance in (x;y;q)
and not in z, because we assume that the distance to the object
can be retrieved easily from the depth image. We convert the
distances for q from degrees to meters as described in III-A.
Notice that without noise, the performance of GPD and CTR




	Introduction
	Related Work
	Approach
	CNN Model
	Generating training data
	Controller

	Simulation Experiments
	Comparison with GPD baseline in the presence of kinematic noise
	Correction for perceptual errors made in single-shot prediction using the controller

	Robot Experiments
	Grasping objects in isolation
	Grasping objects in dense clutter
	Grasping objects with changing orientations

	Discussion

